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Abstract

Due to recent advancements in hardware technology, main-memory database systems
are gaining more importance. This is because of the increasing capacities of the random-
access memory over the years, as a result of which the entire data can now be held
and processed within the limits of the available main-memory. In order to achieve a
maximum performance, database operators in these systems need to be heavily tuned
to exploit the capabilities of the underlying hardware, more specifically the capabilities
of modern CPUs. To this end, software code optimizations relative to such hardware
capabilities can be applied over an existing database algorithm. In our work, we study
the performance behaviour of a set of code optimizations for the database join operator.
For this, we adopt a set of optimization techniques from the literature and analyze their
impacts on radix hash join algorithm.
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2.5 Data-level parallelism via SIMD instructions – adopted from [ZR02] . . 18

2.6 Processing capabilities of SSE/SSE2 registers for various data types –
adopted from [Bik04] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 False sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Five-stage CPU pipelining of depth 2 (RISC Pipeline) . . . . . . . . . . 25

2.9 Control hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Two-pass radix join – adopted from [BTAÖ13] . . . . . . . . . . . . . . 31
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1. Introduction

Over the years, there has been a steady increase in the capacity of main-memory
due to the increasing chip densities and the reduction in cost of semiconductor de-
vices [KWLP12]. Such improvements in RAM have raised the importance of main-
memory database systems since it is reasonable for several applications to store all
their data and process them within the limits of the available main-memory [GMS92].
As a consequence, the database algorithms which were previously running on traditional
database systems have to be adapted to meet the performance needs of a main-memory
database [Bro13].

Due to the placement of data in a physical main-memory, the bottleneck of disk ac-
cess and consequently the expensive I/O operations are omitted in a main-memory
database system. As a consequence, database algorithms for main-memory environ-
ment are bound to the central processing unit (CPU) rather than to the I/O. There-
fore, a main-memory database algorithm can reach an optimal performance by tuning
them to the underlying hardware. More specifically, the algorithm has to exploit the
ever-increasing processing capabilities of modern CPUs [BBS14]. Recent evolution in
CPU architectures have introduced a number of hardware features such as increased
number of CPU cores, wide vector registers with advanced instruction sets, increased
cache-memory capacities and efficient pipelining capabilities [KKL+09, RBZ13]. These
CPU features usually vary across different machines and hence, it is difficult to pre-
dict the performance behavior of a database algorithm on a given machine. Thus, it is
important to understand the performance of a main-memory database algorithm when
run in systems with modern CPU capabilities.

From a software engineering point of view, a main-memory database algorithm can
exploit these CPU capabilities through the application of code optimization techniques.
There are several well known optimization techniques to tune an algorithm to the
underlying hardware. Some examples are loop unrolling, loop fission, vectorization,
parallelization and branch-free technique. However, an optimal performance is not
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guaranteed through the application of all available code optimization techniques since
the advantage of an optimization technique for a database algorithm depends upon the
given machine and the workload [BBHS14]. Hence, the important task is to find the set
of code optimizations which yield the best performance for a given database algorithm.

Goal of Our Thesis

In this thesis work, we study the performance impact of a set of code optimization
techniques and their possible combinations for a database join operator. Although,
there are several techniques to implement a database join, we choose the radix join
technique due to the following reasons:

1. Due to its high hardware-conscious property, the radix join is gaining more impor-
tance in the context of main-memory database join operations [BTAÖ13, Man02].

2. Recently published results argue that with increasing number of CPU cores in
multi-core CPU architectures, a main-memory radix join algorithm would domi-
nate several other hash join techniques. Further, it would also continue to provide
advantages over the sort-merge join technique [BATz13, BTAÖ13, KKL+09].

The main objective of the research in our thesis is driven by the following question:

What set of code optimizations reaches the optimal performance for the radix hash
join technique?

To meet this objective, we present the main contributions in this thesis work as below:

1. We analyze how the radix join algorithm exploits the parallelism capabilities
(data-level parallelism and thread-level parallelism) offered by systems with multi-
core architectures via two code optimization techniques – vectorization and par-
allelization.

2. We attempt to alleviate the problems faced by the radix join due to the presence
of control hazards via the code optimization technique – branch-free code or no-
branching implementation.

3. Once we implement the radix join optimized with the above three code opti-
mization techniques, we identify the individual techniques that tend to provide
reasonable performance over the scalar version of the radix join and then apply a
combination of such code optimization techniques.

4. Following our implementation, we conduct a study on the performance behavior
of the radix join optimized with each of the above techniques using two different
machines and different set of workloads.
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5. Finally, we present our results for all the optimized versions of the radix join on
two separate machines and for different set of workloads. Based on our results,
we draw a common conclusion for the radix join behavior and compare our results
with the earlier published findings.

Structure of Our Thesis

Apart from this chapter, our thesis comprises seven further chapters. In Chapter 2,
we present sufficient background knowledge required to understand the basics of main-
memory database systems and their properties. Further, we also discuss two important
main-memory join algorithms – sort-merge join and hash join and their trends with
respect to improving hardware capabilities. Finally, we illustrate the importance of
code optimization techniques and describe those techniques adopted as part of this thesis
work in detail. In Chapter 3, we discuss the principle of radix join, their advantages
over other hash join techniques and finally describe their working logic in detail.

In Chapter 4, we discuss the central part of this thesis, i.e., we explain our approaches
of implementing the adopted code optimization techniques to the scalar version of the
radix join. To this end, we explain how we evaluated them by describing our evaluation
method in detail in Chapter 5 and in addition, we also present a brief summary of
our evaluation results at the end of this chapter. In Chapter 6, we present sufficient
information about the previous work in the literature on code optimization techniques
that are related to both join as well as other database operators. We provide a summary
of our results and attempt to illustrate its concurrence with the previous published
results in Chapter 7 and finally in Chapter 8, we identify the steps that need to be done
in future as a continuation of this thesis work.
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2. Background

In this chapter, we present important background knowledge required for a good un-
derstanding of the main memory radix join and also various code optimizations for
database operations. For this, we present an overview about main-memory database
systems, their evolving importance in real-time applications and various characteristics
of the same in contrary to a traditional database system in Section 2.1. In Section 2.2,
we present a description of selected main-memory join algorithms in the literature and
their behavior with respect to the underlying architecture. Finally, in Section 2.3, we
describe several code optimizations adopted as part of this thesis work.

2.1 Main-Memory Database Systems

Main-memory database systems (MMDB), also known as in-memory database systems,
are database systems where the entire database fits into the main-memory, i.e., perma-
nent storage of data in the physical main-memory. This is in contrast to conventional
databases where the data is disk resident and moved into the main-memory during
data access on request from the Central Processing Unit (CPU) [GMS92]. Such sys-
tems have gained more importance over the years, because increasing chip densities and
reduced cost of semiconductor devices makes it feasible to offer systems with gigabytes
and terabytes of main-memory [KWLP12]. This is particularly attractive for a num-
ber of existing and emerging real-time applications whose database sizes are within the
bounds of the main-memory capacity. Even for applications whose database sizes are
larger than the available main-memory limit, the existing database can be divided into
a number of logical databases based on certain types or classes of data and the data ac-
cessed with more frequency can be stored in the main-memory. Some of the examples for
existing real-time MMDB designs are Main-Memory Recoverable Database with Stable
Log (MARS), Hardware Logging (HALO), Silicon Database Machine (SiDBM),IBM’s
Office-By-Example (OBE), SAP HANA (High Performance Analytic Appliance) and
Microsoft Hekaton [GMS92, Eic88, DFI+13, BK+14].
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2.1.1 Distinction between In-Memory Database Systems and
Disk-Resident Database Systems

With the storage of data in the physical main-memory, several distinctions exist in the
design and the access pattern behavior between the in-memory database system and
the disk-resident database system due to the varying properties of the main-memory
and the magnetic disk. However, all such distinctions still ensure the ACID property
compliance of a general database system. We explain some of the prominent distinctions
in the following sections.

Design

The storage of data in a main-memory avoids placement of disks in the path of a query
processing plan for database operations since the data can be accessed directly from
the main-memory [GMS92]. Thus, the bottleneck of disk access is now omitted, which
reduces the time required for data access by several orders of magnitude compared
to a regular disk access in a disk-resident system (about 1:106 in favor of the main-
memory) [VAD+11]. As a consequence, MMDBs favor high-speed access to stored data
which result in an increased response time of database operations and a speedup in
performance of up to significant levels can be realized [GMS92]. Also, main-memory
databases follow a well-organized and optimized design pattern when compared to con-
ventional databases. For example, due to the omission of expensive I/O operations on
disk and flash memory, MMDBs run out of need for various mechanisms such as tertiary
memory management and file management. However, mechanisms to ensure long-term
accessibility such as recovery and backup in a MMDB are handled by the existing disk
memory [Eic88].

Cache Memories and Index Structures

In spite of providing faster access to data compared to disk-resident systems, an in-
memory database fully exploits the available cache memory to achieve a further im-
provement in data retrieval operations. The main goal in this context is that almost
every data item needed for an entire transaction can be placed in a single cache mem-
ory or a hierarchy of cache memories of large size to improve the overall performance
(cache-conscious operations). The disk-resident database, on the other hand, also takes
advantage of very large cache memories but the transfer of data from the disk to the
cache requires the computation of disk addresses since the index structures in existence
are designed solely for the disk memory and not for the main-memory. However, in
case of MMDBs, with the storage of database relations and their corresponding tuples
directly in the main-memory, applications or software programs access the tuple at-
tributes via the pointer to tuples. Index representation of this type is cheaper when
compared to the existing disk indices and they also eliminate the need for index com-
pression mechanisms and handling of fields of various lengths. Thus, the MMDB index
structures are primarily concerned in reducing the computation time of overall database
operations, at the same time utilizing a comparatively reduced memory space [LC86].
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Buffer Management

A disk-resident database system requires the management of buffer policies. For ex-
ample, when the CPU requests a data item, the disk address is first computed with
the help of which the buffer manager checks whether the requested data already ex-
ists in the main-memory or need to be moved into the main-memory from the disk.
However, in case of memory-resident systems, since the data is already available in
the main-memory, the data can now be accessed efficiently using the memory address
(index representation described in previous section), thus eliminating the need for the
enforcement of buffer management [GMS92].

Volatility

In spite of offering various benefits over disk-resident database systems, MMDBs are
prone to serious volatility problems and system errors due to the volatile nature of
the main-memory. However, recent advancements in non-volatile main-memory devices
such as NVRAM (non-volatile random-access memory) have been a significant factor
for the feasibility of the usage of MMDBs in real world applications at a comparatively
higher cost [LC86].

Similarly, several other distinctions exist in the context of concurrency control, recovery
mechanisms, compression mechanisms, data clustering mechanisms and data represen-
tation with all of these distinctions primarily giving rise to an optimized approach for
main-memory databases [GMS92]. Thus, memory resident databases play a vital role in
applications where reduction in latency, performance improvement in query processing
and utilization of minimal hardware resources are of significant importance.

2.1.2 Cache Sensitivity

As mentioned in Section 2.1.1, an in-memory database system fully takes advantage
of high speed cache memories to enhance the overall performance of database query
processing applications. With increasing processor speeds over the years, the access
latency of the random-access memory (RAM) cannot cope with the improvements in
CPU speed for several economical reasons. Thus, there is a big performance gap between
operating speeds of the CPU and the memory access latency. To bridge this gap, cache
memories are introduced. Cache Memories are small blocks of high-speed memories
situated between the main-memory and the CPU that temporarily hold main-memory
contents that are actively in use [Man02]. Based on the main-memory content they
store, a cache memory can be distinguished into two different types - data cache, a
read-write memory which caches main-memory data items and instruction cache, a
read-only memory which caches active instructions in use. For any database operation,
the content of a cache memory is first accessed for data/instructions. If the data request
is served within the cache memory without the need for a main-memory access, it is
called cache hit. In case only a portion of the required content is available in the
cache due to cache memory overflow or non-availability of data/instructions, then the
remainder of the content is accessed in a normal way from the main-memory and then
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moved into the cache. This phenomenon where the data request cannot be served with
the available data in the cache memory is called cache miss. Both cache hit rate and
cache miss rate have severe impact on the execution rate of main-memory algorithms.
This is because for most of the database applications, the time required to access the
cache memory contents is only about 10-15 percent of the total time required for a
main-memory access and thus they improve the overall execution rate of the application
programs [Smi82].
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Figure 2.1: A simple representation of a three-level cache hierarchy

With recent advancements in hardware capabilities, cache memories are organized by
means of a hierarchy between the CPU and the main-memory. With respect to MMDBs,
careful usage of such a hierarchical cache memory helps improving the cost of a main-
memory database operation. Manegold et al. proposed a memory access cost model for
hardware consisting of N levels of caches used together with translation lookaside buffers
(TLB) for demonstrating the reduction in cost of memory accesses for main-memory
database algorithms [MBK02]. The most common hierarchical cache representation is
a two-level cache (L1 and L2 ), with data in L1 cache can be accessed with a latency of
1-2 CPU cycles, allowing for access with the highest speed in cache hierarchy while data
in L2 cache can be accessed with a latency of 5-10 CPU cycles. The caching mechanism
in this type of hierarchy is such that the L2 cache usually backs up the copies of data
in L1, i.e., whenever a L1 cache content need to be replaced, it is first moved into the
L2 cache and then the new content is copied either from the main-memory or L2 cache
(if available). Rapid advancements in chip technology have introduced a new form of
cache hierarchy which includes a third level of cache memory (L3 ) with a latency of
10-20 CPU cycles. All three levels of memory are integrated directly on the CPU die
itself and their memory capacity varies proportionally with the increasing hierarchical
levels. For example, Intel’s Core i5-2500 supports a 256 Kb L1 cache, a 1 Mb L2 cache
and a 6 Mb L3 cache for each of its CPU core. In Figure 2.1, we show an example
of a simple representation of a three-level cache hierarchy. It is clear that closer the
cache memory to the processor in the hierarchy, higher the speed and lower the memory
capacity [MBK02, BBS14, KW02].
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In addition to the cache capacity, cache hit-miss ratios, and the cache-level hierarchy,
Manegold et al. argue two other cache-specific hardware parameters that are sensitive
to the overall performance of main-memory database operations [Man02]. They are as
follows:

• Cache-Lines, also known as cache blocks, represent the internal organization
of the cache memory and are the smallest unit of data transfer across different
levels in a cache hierarchy, i.e., complete data inside the block is either read or
written. For example, whenever a cache miss occurs in an L1 cache due to memory
overflow, an old line is replaced by means of a cache replacement strategy. Several
cache replacement strategies are presented in [Zah07]. After this replacement, a
new line is moved either from L2 cache or main-memory with every bit stored
in the line/block transferred in a parallel fashion. Typical size of cache-lines
ranges from 16-128 bytes and are critical in determining the performance of a
main-memory system [Man02].

• Cache Associativity is a cache memory metric that determines the cache-line
to which the newly requested data would have been loaded. The simplest case is a
cache memory with directly mapped associativity where each data in main-memory
finds exactly one location in the cache memory. Though the lookup appears to
be simple in this type of cache, it incurs a significant amount of conflict misses
(cache misses that do not occur in caches with a different associativity). Contrary
to this is a fully associative cache where a cache-line comprising the main-memory
data can go to any location in the cache memory. Even though it overcomes
the problem of conflict misses, the task of searching for cached data incurs a
significant overhead compared to a directly mapped cache. Modern processors
support the use of a n-way set associative cache which performs a lookup on n
different locations for each data request [Man02].For example, Intel’s Core i5-2500
and Xeon E5-2690 implements a 4-way set associative caching mechanism.

To summarize, cache memories are of vital importance for enhancing the execution
performance of any type of database systems. More specifically, metrics and character-
istics such as cache capacity, cache hierarchy, hit–miss ratio, cache-line sizes and cache
associativity are more sensitive for the overall performance of main-memory database
operations.

2.1.3 Column-Oriented Storage Model

A typical relational database management system is organized in such a way that in-
dividual rows or tuples of a relation are stored in contiguous memory locations (row-
oriented approach). An alternative way to this would be to re-organize the storage
model based on a column-oriented fashion, i.e., database records are stored by means
of individual columns. As mentioned in the previous section, cache capacity is one
of several characteristics that influence the performance of a main-memory database
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operation. Allocation of records by means of column-oriented approach tends to im-
prove the cache consciousness and therefore the overall execution rate [BKM08]. For
instance, in a row-oriented storage model, executing an aggregation or projection oper-
ation involves moving more columns or attributes than needed from the main-memory
into the cache whereas in a column-oriented approach, only those columns required for
the operation are moved into the cache [Los09]. Thus, the probability of occurrence of
cache misses due to cache capacity overflow is higher in the former than in the latter
case. For our work, we adopt a column-oriented approach for the storage model. This
will be discussed in more detail in Chapter 4.

The major disadvantage of a column-oriented storage model is the task of tuple recon-
struction in case a number of additional attributes need to be gathered for a database
operation. A tuple reconstruction is a simple join operation between the attributes in
the result and the additionally needed attributes based on tuple identifiers (TIDs) or
Object Identifiers (OIDs) [IKM09]. Although this task appears to be a performance
overhead in column-oriented stores, a significant amount of benefit in execution perfor-
mance is realized on the other hand because of the reduced size of the processed data.
In addition to the cache-conscious benefits, the column-oriented storage model provides
various other benefits as follows:

• Storage of records in a column-oriented fashion favors the application of compres-
sion mechanisms at an improved rate due to the similarity between contiguous
data items. Moreover, it also favors the applicability of additional compression
schemes that are not favored by a row-oriented storage model [Fer05].

• Since the execution of various database operations such as aggregation and projec-
tion processes only the required columns, a column-oriented model significantly
avoids a large number of I/O burdens in case of real-time business intelligence
queries [Los09, KSS12].

• A row-oriented model needs to maintain additional storage space for the imple-
mentation of index structures. On the contrary, most of the column stores allow
the storage of data within the index itself, thus providing a more optimized stor-
age model. In addition, such index structures improve the performance of query
processing applications by providing a sophisticated approach for database oper-
ations within and across the attributes [Los09].

2.2 Main-Memory Joins

A relational join is a database binary operation that retrieves tuples from two different
relations by using information common to both of them. For example, consider a rela-
tion containing details about all departments in an enterprise and another relation with
information about employees of the same enterprise. The result of a typical join opera-
tion in this case would be an output relation describing various details about the depart-
ments with its corresponding employees. With the evolution of main-memory databases
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in recent years, Leonard D. Shapiro argue that main-memory availability of significant
fraction of the memory required by one of the joining relations facilitates an effective
implementation of join operation without the need of an external disk memory [Sha86].
In addition, careful exploitation of architectural features such as cache memories, trans-
lation lookaside buffers (TLB) and processor-memory bandwidth improves the access
latency of performing a join operation in the available main-memory [KKL+09].

A join operation between two relations can be simply executed by searching data items
that possess the same value for an attribute common to both relations. A brute-force
approach in this case would be a nested loop join algorithm in which for every tuple in
the outer relation, the whole inner relation is scanned for potential matches. In this way,
the execution is repeated iteratively until all tuples in the outer relation are processed.
However, nested loop joins are highly complex and do not provide an optimal solution
for applications comprising of very large relations [Bro13].

In the following sections, in order to have a good insight on the working logic of main-
memory joins, we focus on two important join algorithms which are based on sorting
and hashing/clustering approaches - Sort-Merge Join and Hash Join.

2.2.1 Sort-Merge Join

As the name suggests, this type of join is carried out in two phases - sort phase and merge
phase. In the sort phase, both input relations, R and S, are sorted on their respective
join attributes. Then, in the merge phase, the sorted relations are sequentially scanned
and whenever there is a match between their respective join attributes, tuples from
both relations are inserted into the output relation. This implementation of merge
phase assumes that the join attribute on the inner relation R is a primary key, i.e., it
possesses only unique values for the attribute. However, in case of a non-primary key
attribute, the merge phase needs to be implemented with an additional nested loop
join algorithm for facilitating several passes over all tuples possessing the same join
attribute value. The complexity of a typical sort-merge join is O(n log n) for each
relation with the sort phase comprising more than 98% of the overall execution time of
the join algorithm [KKL+09, ME92].

Sort Phase

As explained in Section 2.1.2, an in-memory database has to fully exploit the use of
shared cache memories so as to reduce the number of accesses to the main-memory.
Hence, during the sort phase, the entire input relation is divided into a number of
chunks such that for a cache memory of size C bytes and a data item of d bytes, the
size of each chunk would be C/2d such that each chunk resides in the cache and is sorted
separately to produce a list of sorted runs or data blocks. Each of the individual sorted
runs is then merged with one another in a number of steps until a single sorted run is
produced. In order to reduce the cache memory overflow during the merging of sorted
runs, Chhugani et al. proposed a multi-way merging algorithm implemented with cache-
conscious FIFO queues in which more than two runs are merged at once incrementally
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Figure 2.2: Multi-way merging implemented as multiple 2-way merging – adopted
from [CNL+08]

to produce a final sorted run [CNL+08]. In Figure 2.2, we depict a simple multi-way
merging algorithm implemented by means of multiple two way merging blocks. Each
node maintains a FIFO queue and whenever there is a room for an entry in the parent
node’s queue, the algorithm checks for the number of elements in the corresponding
child nodes’ FIFO queues. If each of the child nodes contains more than one element,
then the smallest of all these elements is moved into the parent’s queue. This procedure
is repeated recursively until both child queues becomes empty which means the parent
node contains a sorted run of the merged child nodes [CNL+08, BATz13].

It should be noted that the algorithm discussed so far is based on the assumption that
sorting is performed only on the tuple keys. However, in case of (key,rid) pairs, where
rid refers to the address of the tuple containing the key, a straightforward approach
is to simply extend the algorithm by treating the (key,rid) pairs as a single entity and
comparing only the first m bits comprising the key of each entity [CNL+08].

Merge Phase

Algorithm 2.1: Sort-merge join – merge phase (equi-join)

Input 1 : Sorted inner relation R with join attribute JR
Input 2 : Sorted outer relation S with join attribute JS
Output : Relation O
tS : tuple of S
tR : tuple of R
for each tS ∈ S do

while tR.JR <= tS.JS do
read next tR from R
if tR.JR = tS.JS then

O = insert(tR, tS) /* join is executed */
end

end
end
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Once the two input relations are sorted, a sequential scan is performed between join
attributes of the sorted input relations and whenever there is a match satisfying the
join condition, tuples from both relations are inserted into the output relation. If
there is no match found, then the next tuple is read from the relation with the smaller
join attribute value. We illustrate an overview of the merge phase for an equi-join in
Algorithm 2.1 [ME92].

Versioning with Architectural Changes

With the recent evolution of the underlying computer architecture, modern computers
used today have come up with various architectural features such as multiple cores inte-
grated on a single chip with provision for several threads on each core (multi-threading)
and support for vectorization via SIMD (Single Instruction Multiple Data) instructions.
These architectural features result in an improved execution performance via data- level
parallelism and thread-level parallelism [KKL+09]. We explain these parallelisms briefly
below:

• Thread-level parallelism is a form of parallelism achieved by running multiple
threads concurrently such that each thread performs the execution of a part of
the entire algorithm. In this way, each thread performs different tasks of the
same algorithm (task decomposition) or split the same task among themselves
within the algorithm context (data decomposition). Therefore, an algorithm is said
to be complete only when all running threads are finished with their individual
execution [AR06].

• Data-level parallelism , in contrast to thread-level parallelism, is a form of
parallelism in which a single instruction, which is previously applied on only one
data item at a time, can be now be applied simultaneously on more than one
data item. Instructions of this type, known as SIMD instructions, are capable
of operating on 128 -bit or 256 -bit vectors simultaneously and are supported via
cores with extended width registers called SIMD registers [Bik04].

We explain both these parallelisms in detail in Section 2.3. Taking advantage of these
architectural changes has resulted in an improved version of the existing scalar imple-
mentation of the sort-merge join. Chhugani et al. proposed several versions of sort-
merge join including SIMD, parallel and a combination of SIMD with parallel versions
with all of these versions primarily outperforming the scalar version by a significant
factor [CNL+08]. Also, both Chhugani et al. and Kim et al. project that with advent
of wider SIMD architectures in the future (such as one operating on 512 -bit vectors si-
multaneously), sort-merge is likely to gain more advantage with respect to its execution
performance [KKL+09, CNL+08].
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2.2.2 Hash Join

The principle behind a hash join on two input relations, R and S, is to build a hash
table (build phase) by scanning the join attribute (in most cases, the primary key) of
the smaller relation R. After the hash table is built, the larger relation S is scanned
sequentially (probe phase) and for each tuple in relation S, a lookup is performed on
the hash table for finding matching keys. Finally, an entry is inserted into the output
relation by appending tuples from both relations for each matching pair of keys. In this
section, we explain two basic hash join implementations – Canonical Hash Join and
Partitioned Hash Join.

Canonical Hash Join

The canonical hash join is the simplest of all hash join algorithms. In the build phase, a
hash table is built by applying a user-defined hash function, h(K) on the inner relation R
until the relation R is scanned completely [BTAÖ13]. In order to avoid collisions while
performing lookup on the hash table, in most of the cases, the hash table is designed
in such a way that its size is approximately two times larger than the cardinality of the
inner relation [KKL+09].
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Figure 2.3: Canonical hash join – adopted from [BTAÖ13]

Then, in the probe phase, the same hash function, h(K) is applied on the outer relation
S. The result of the hashing indicates the entry in the hash table built for R to which
the keys or the join attribute values of S should be compared. Whenever there is a
match during comparison, an entry consisting of tuples from R and S is inserted into
the output relation. Assuming that the complexity of data accesses to the hash table is
constant, the time complexity of a canonical hash join is around O(R + S) [BTAÖ13].
We depict a simple working logic of a canonical hash join in Figure 2.3.
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Partitioned Hash Join

The main disadvantage of a canonical hash join is that when the size of the built hash
table exceeds the size of the cache memory, it leads to a significant amount of cache
misses. To overcome this problem, the partitioned hash join algorithm is proposed. The
basic idea behind this algorithm is to build a number of hash tables such that each of
their individual sizes fall within the limits of the available cache memory. Hence, cache
misses that occur during the probe phase can be significantly reduced. To achieve this
property, this algorithm introduces a new phase called partition phase in which both
input relations are divided into a number of partitions. The assignment of tuples to
a particular partition is determined by a user-defined hash function, h1(K). Hence,
the input to the build phase would consist of partitions of the inner relation R instead
of the entire relation. For each of these partitions, a hash table is built separately by
applying a user-defined hash function h2(K). Thus, the resulting hash tables are small
enough to avoid cache misses. It should be noted that the hash functions h1(K) and
h2(K) are not equal.
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Figure 2.4: Partitioned hash join – adopted from [BTAÖ13]

Finally, in the probe phase, the hash function h2(K) is applied separately on each
partition of the relation S and probing process is carried out with their respective hash
tables as in a canonical hash join. Even though the use of cache sized hash tables avoid
cache misses during the build phase, the algorithm suffers from translation lookaside
buffer (TLB) misses during the partition phase. This is because TLBs caches the virtual
memory mapping for partitions residing on different pages and TLB misses are prone to
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occur if the number of partitions created exceeds the number of available TLB entries.
To overcome this problem, the concept of radix partitioning of hash join is proposed in
which the number of TLB entries serve as an upper bound for the number of created
partitions. We explain the partitioned radix join in detail in Chapter 3. In Figure 2.4,
we present a simple representation of a partitioned hash join [BTAÖ13].

Versioning with Architectural Changes

Similar to a sort-merge join, the architectural changes with data-level parallelism and
thread-level parallelism can be exploited to extend the serial hash join implementations.
With respect to improvement in performance, all hash joins significantly benefit through
thread-level parallelism. However, there is no clear evidence for their improvement
with data-level parallelism via SIMD instructions. Kim et al. argue that application of
SIMD instructions together with their limitations in handling the scatter and gather
operations limits the exploitation of data-level parallelism [KKL+09]. But, there is
no evidence for the behaviour of hash joins when we limit applying SIMD only to
functionalities not involving such gather and scatter operations. Furthermore, there
is no clear distinction about the performance behaviour among different types of hash
join with SIMD architectures. We will discuss scatter and gather operations and the
restrictions of SIMD instructions with these operations in detail in Section 2.3 under
limitations of vectorization.

2.3 Code Optimizations

As mentioned in the previous section, recent evolution in the computer architecture
have introduced numerous features that apparently improve the processing capabilities
of modern CPUs. Examples of such features include provision of CPU with multiple
cores on a single chip with each core supporting one or more hardware threads and
vectorization via 128 -bit SIMD registers. Furthermore, the inclusion of branch predic-
tors in commodity CPUs have also become a trend to make their pipelining capabilities
more efficient [KKL+09, RBZ13]. In order to take advantages of all these processor
capabilities, a database algorithm needs to be explicitly hand-tuned to exploit them.
However, the question of whether an algorithm really benefit from such explicit tuning
is still an open research problem. Therefore, it is important to understand the behavior
of the performance of an algorithm when run in hardware with modern CPU capabil-
ities. Current approaches implement database operations in a high-level programming
language and tune them using proposed code optimizations for the given processing
capabilities. To automate this process, recent results of the software engineering com-
munity should be transferred to the database community in order to find the optimal set
of code optimizations to be applied for the given workload and the machine [BBHS14].

Code optimization is the method of identifying pieces of code that require improvement
and transforming them such that the resultant code achieves better performance with
respect to time and space. The transformation in the code is usually made transpar-
ent to the outside world. Code optimization techniques are classified into two broad
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categories - processor-independent and processor-dependent. The former can be applied
regardless of the underlying architecture while the latter mainly aims at the exploita-
tion of the processor intrinsics. Heiko Fall et al. proposed several code optimizations
that fall in both these categories [FM04]. As part of this thesis work, we adopt three
important optimization techniques in the literature - vectorization, parallelization and
branch-free coding. We explain them in detail in the following sections.

2.3.1 Vectorization

The term vector refers to a set of data items that are placed adjacent to one another.
Vectorization is a process in which an algorithm is transformed from its original scalar
form into a vector form such that the operation intended (which is previously applied
only between two operands at a time) can now be simultaneously applied between sev-
eral pairs of operands, i.e., application of a single instruction to multiple data items
in the resultant vector. These instructions are called SIMD (Single Instruction, Mul-
tiple Data) instructions [Bik04]. CPU cores supporting SIMD capabilities (cores with
extended width registers called SIMD registers) were originally built to improve the per-
formance behaviour of multimedia applications that reiterate a particular operation on
large arrays of numeric elements. Over the years, several efforts have been undertaken
by numerous researchers to obtain significant benefits from the SIMD technology for
database operations due to the nature of iterative processing of long sequence of records
in database applications. Jingren Zhou and Kenneth A. Ross have already proved the
benefits that various database operations like scan, aggregation and index designs could
obtain from a SIMD technology [ZR02].

SIMD Instructions

A SIMD instruction can be viewed as a set of instructions packed together and op-
erating on more than one element at the same time. Thus, they unroll a serial loop
implementation to several depths allowing for an efficient execution via data-level par-
allelism [Bik04]. In Figure 2.5, we represent the parallel execution of an operation of
the form A op B (where op is an operator) between two sets of items with each set
packed together in two separate 128 -bit SIMD floating point registers. The registers
A and B are aligned to 16 -byte boundaries such that they are loaded with four data
items A1, A2, A3, A4 and B1, B2, B3, B4 respectively each of width 4 bytes. Now, the
operation is executed simultaneously between each pair of operands (A1,B1), (A2,B2)
and so on. Finally, the result is stored in another 128 -bit register. The individual data
items (for example, result of A1 op B1) can be extracted using various intrinsics relative
to the SIMD architecture.

SSE Intrinsics

Modern CPU architectures support SIMD capabilities through a number of flavors. For
example, on Intel cores, the benefits offered by SIMD instructions are realized by means
of SSE (Streaming SIMD Extensions), SSE2 (Streaming SIMD Extensions 2) and AVX
( Advanced Vector Extensions) instructions, whereas in case of AMD machines, they
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Figure 2.5: Data-level parallelism via SIMD instructions – adopted from [ZR02]

are supported via 3DNow!, Enhanced 3DNow! and 3DNow! Professional technolo-
gies [ZR02]. As part of this thesis work, we make use of Intel’s SSE intrinsics for the
application of SIMD code optimizations.

Streaming SIMD Extensions are coding extensions supported by Intel’s C++ compilers
for the provision of SIMD capabilities. Intel implemented them by extending their
existing x86 architecture with eight registers labelled XMM0 through XMM7, each of
width 128 bits. These SSE registers support instruction sets capable of operating only
on single precision floating point numbers, i.e., they operate only on 32 -bit mode, for
example, processing four 32 -bit integers simultaneously. Thus, for enabling operations
in 64 -bit mode (such as double precision floating point numbers and 64 -bit integers),
Intel extended the SSE instruction sets by further adding eight more registers labelled
XMM8 through XMM15. The instruction sets supported by the resulting architecture
are called SSE2 instruction sets which add additional instructions to the existing SSE
instructions [Bik04]. The processing capability of SSE/SSE2 registers with respect to
various data types can be understood with the help of Figure 2.6.

From Figure 2.6 on the facing page, it is clear that the total number of bits supported
by any SSE/SSE2 register for processing is 128. Hence, the input data that need to be
processed by SSE registers must be aligned to 16 -byte boundaries. For the purpose of
more efficient processing, Intel extended the width of SIMD registers from 128 bits to
256 bits which are realized via AVX (Advanced Vector Extensions) instruction sets in
which functionalities for 32 -byte boundary alignments are implemented. In addition,
there are several other Intel intrinsics that support SIMD instructions such as SSE3,
SSE4.1, SSE4.2 and AVX2. A detailed explanation of all these instruction sets can be
found in [JKLM12] and [sim06]. The main objective of these special purpose intrinsics
is to enable the programmers to make use of methods and variables available in C++
language to realize the SIMD capabilities without the need of explicit assembly language
coding. Some compilers also allow autovectorization, i.e., a program can be converted
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Figure 2.6: Processing capabilities of SSE/SSE2 registers for various data types –
adopted from [Bik04]

from a serial representation into a vector representation without the programmer’s
intervention [Bik04].

Listing 2.1: Serial implementation of integer multiplication

1 void add ( )
2 {
3
4 // d e c l a r a t i on and d e f i n t i o n o f arrays a [ ] and b [ ]
5 // d e c l a r a t i on o f output array c [ ]
6
7 for ( int i =0; i<a r ray l eng th ; i++)
8 {
9 c [ i ] = a [ i ] ∗ b [ i ] ;
10 }
11
12 . . .
13 }

In Listing 2.2, we illustrate how a simple multiplication operation is optimized by the
application of SSE intrinsics compared to it a sequential execution in Listing 2.1. Here,
we use the SSE intrinsic _mm_mul_epi32 (line 17 of Listing 2.2) to perform parallel
multiplication between the 32 -bit integer arrays a and b. The contents of the two ar-
rays are loaded into the 128 -bit registers A and B (lines 15 and 16 of Listing 2.2 on
the next page) respectively in a series of iterations for the simultaneous application of
multiplication operation on four pairs of data items as opposed to a sequential multi-
plication in Listing 2.1. Thus, the overall SIMD operation (first for loop in Listing 2.2
on the next page ) can be viewed as a simple loop unrolling of depth 4 combined with
the SIMD capability. Thus, the performance of the overall vector implementation is
significantly improved compared to its scalar counterpart. It should be noted that only
the 16 -byte aligned data would be processed in the first for loop. For this purpose,
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a variable simd_length is used to keep track of the 16 -byte alignment length of the
contiguous memory locations. The remaining unaligned items are then processed in
the second loop in a typical sequential fashion (lines 21-24 ). However, the overhead
imposed by the sequential execution of the second loop, load and store operations does
not significantly affect the overall performance of a vectorized algorithm especially when
the input array contains a large number of items for processing.

Listing 2.2: Vector implementation of integer multiplication

1 void add ( )
2 {
3
4 // d e c l a r a t i on and d e f i n t i o n o f arrays a [ ] and b [ ]
5 // d e c l a r a t i on o f output array c [ ]
6
7 m128i A, B,C;
8 m128i∗ s s e a r r ay1 = r e i n t e r p r e t c a s t< m128i∗>(a ) ;
9 m128i∗ s s e a r r ay2 = r e i n t e r p r e t c a s t< m128i∗>(b) ;
10 int s imd length = s izeof ( m128i ) / s izeof ( int ) ;
11
12 // f o r 16−by t e a l i gn ed data
13 for ( int i =0; i<s imd length ; i++)
14 {
15 A = mm load si128(& s s e a r r ay1 [ i ] ) ;
16 B = mm load si128(& s s e a r r ay2 [ i ] ) ;
17 C = mm mul epi32(A,B) ;
18 mm storeu si128(& s s e a r r ay3 [ i ] , C) ;
19 }
20 // f o r loop to proces s remaining una l i gned data
21 for ( . . . )
22 . . .
23
24 }

Limitations

Despite offering high degrees of data-level parallelism, SIMD instructions are prone to
several limitations. Thus, while hand-tuning an algorithm to exploit the benefits of a
SIMD architecture, a programmer should take care while applying SIMD optimization
techniques so that the overall performance is not sacrificed by such limitations [ZR02].
Some of the significant limitations of SIMD instructions are as follows:

1. Non-Contiguous Memory Access – Gather Operations

As mentioned previously, SIMD instructions operate on data items stored adja-
cent to one other, i.e., in contiguous memory locations with 16 -byte or 32 -byte
boundary alignments (in case of SIMD registers with 128 -bit width or 256 -bit
width respectively). Therefore, for operations involving read on data items stored
in non-contiguous locations, SIMD functionality requires gathering elements from
different locations which incurs a high performance overhead. Thus, an optimal
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solution in this case would be to revert back to the sequential processing of such
operations [Bik04].

2. Scatter Operations and Update Collisions

Similar to a contiguous memory load, the results of a single SIMD register can
be stored only in contiguous memory locations (16 -byte or 32 -byte boundary
limits). Hence, SIMD cannot handle storage of data to non-contiguous memory
locations, i.e., scattering of data to non-sequential memory addresses. Further,
when the result of parallel writes of a single SIMD instruction map to the same
location, it results in a collision overhead. Current implementations of SIMD
architectures are not supported to handle such collisions and hence, similar to a
gather operation, an efficient way of processing in both these cases is to adopt a
sequential strategy [KKL+09].

3. Branching Statements

SIMD does not favor operations involving branching statements. For control flow
operations such as if-else, an alternative SIMD primitive can be implemented by
means of masking, i.e., process of generating a vector containing 1’s or 0’s corre-
sponding to true or false conditions [ZR02]. For example, in case of a database
scan operation, this principle of masking can be used. However, the branching
statements involved in detecting the mask value (0 or 1 ) to find the match for
scan cannot be executed using SIMD capabilities and hence, this task has to be
done in a serial fashion. At the same time, vector solutions of this type are not
applicable to if-else conditions in all situations. Moreover, an optimal perfor-
mance is not guaranteed in every situation where implementations of this type
are used [KKL+09].

4. Function Calls

SIMD functionalities do not support the vectorization of operations involving calls
to pre-defined or user-defined functions. Exceptions to limitations of this type are
mathematical functions supplied along with compiler intrinsics and user-defined
inline functions [ZR02].

2.3.2 Parallelization

Parallelization is a form of computing in which a given task is split into a number of
smaller tasks each of which is then executed concurrently. On single core architectures,
parallelization is realized by means of simultaneous multithreading (SMT) in which the
entire program’s instructions are divided among all available threads in the core such
that each thread runs concurrently sharing the program’s resources and their execution
is independent to one another. With the evolution of multi-core CPU architectures, the
concept of SMT can be extended further to take advantages of all available threads in
the entire hardware system.
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Akhter and Roberts claim that the speedup achieved as a result of parallelizing a pro-
gram can be measured by the below metric:

Speedup = Response time of the best serial program
Response time of the equivalent parallel program

[AR06]

Note that the parallelism discussed here is inter-instruction parallelism as opposed to
the intra-instruction parallelism provided by SIMD instructions.

Multi-threading

A thread is the smallest unit of program execution which consists of a set of instructions
related to one another. Every program contains at least one thread (main thread) during
its initialization. The main thread in turn can create other threads or can simply execute
the entire program on its own. From a hardware point of view, each thread has its own
execution path and the operating system handles the task of software to hardware
thread mapping. A multi-core CPU consists of several cores with each core provided
with a separate hardware environment and support for one or more threads. However,
it should be noted that if the system is not used in SMT mode (hyper-threading in
case of Intel architectures) , each core can use only one thread for its execution despite
offering support for many threads. Therefore, parallelization can be achieved by means
of multi-threading in which the execution of the program’s instructions is partitioned
among multiple threads. In this case, each thread shares the entire resource allocated to
the program (for example, memory) and execute independently in a concurrent fashion.
Finally, the output can be obtained by combining the results of all threads. Thus, a
program execution in a multi-threaded environment is said to be complete only when
all the invoked threads complete their individual execution.

In order to achieve true parallelism, the number of threads set to use by the programmer
should not exceed the total number of available threads in the system to reduce context
switching, a process in which the control of a program’s execution is transferred from
one thread to another thread during which the state of the thread should be saved
for it to be restored later. An algorithm tuned to exploit the thread-level parallelism
on one machine is always not portable to other machines since the number of cores
and consequently the total number of threads vary across several machines [AR06].
For example, the Intel Core 2 Quad Q9550 CPU contains four cores with each core
supporting a single thread whereas the Intel Xeon E5 -2690 CPU contains a total of
eight cores with two threads per core [BBS14].

An algorithm in a multi-threaded environment may be decomposed into one of the two
forms as explained below:

• Task decomposition - A process in which distinct modules of a program that do
not have a sequential flow are assigned to multiple threads and are then executed
concurrently. To have a good benefit from this approach, a programmer should
take care in order to ensure that the execution of individual modules does not
conflict with each other and do not share same resources [AR06].
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• Data decomposition – A process in which a single task or module is split among
multiple threads for a better performance, thus reducing the overall problem size.
In this way, the amount of work done for a given time period is more compared
to a sequential execution of the same module. However, a performance barrier
exists in this type of multi-threading when several threads access the same block
of data contained in the module [AR06].

For using parallelization techniques in our work, we adopt the principle of data decom-
position since we have a sequential flow between distinct modules used in our imple-
mentation. Thus, we apply parallelization techniques to each of our individual modules.
We explain this in detail in Chapter 4.

Limitations

Parallelizing a program using multi-threading is not guaranteed to provide performance
benefits over a sequential execution in all situations. Some of the challenges faced by a
multi-threaded program are as follows:

1. False Sharing
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Figure 2.7: False sharing

Consider a scenario in a dual-core system in which each core is provided with
one thread. Now, if each thread attempts to make an access to two separate
data items that are stored in the same cache-line of the underlying memory for
an update operation, then the memory system marks this cache-line as invalid.
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This phenomenon is known as false sharing. Therefore, any attempt to make an
update on data items belonging to this cache-line should take place directly in the
memory to maintain cache coherency. False sharing degrades the performance to a
significant extent even though threads accessing such data items do not perform
the actual update [AR06]. We depict this phenomenon in Figure 2.7 on the
preceding page.

2. Race Conditions and Cache-Line Bouncing

Race condition is a situation that occurs when multiple threads attempt accessing
the same data item. Therefore, such items should be protected by a locking
mechanism, thereby preventing concurrent accesses. This is because if threads
accessing the same item perform a write operation, it leads to unexpected results
at the end of the program execution. Thus, activities of this kind need to be
synchronized such that one thread waits until the other thread completes its
work on that item and explicitly releases the lock. Consequently, when a lock is
released and the data item under protection is accessed by a thread belonging to
another separate core, then the cache-line corresponding to this item and the lock
has to be transferred to the cache memory of that core. This is called cache-line
bouncing. Both race conditions and cache-line bouncing limits the benefits offered
by multi-threading [AR06, Kle09].

3. Load Imbalance

High degree of parallelism can be achieved only when there is an equal amount
of load on all threads being invoked for a task. Load imbalance causes serious
degradation to the performance since the overall response time of the task largely
depends upon the thread allocated with the maximum load. For example, when
an activity is synchronized among two threads T1 and T2, then the thread T1 with
the largest load causes another thread T2 to wait for a long time for the resource
being held by T1. Thus, T2 cannot proceed in executing its other activities.

4. Deadlock

Deadlock is a typical multi-threading barrier that occurs when a thread is made to
wait indefinitely for a resource that will never be released. For example, assume
two threads T1 and T2. Now, T1 is waiting for a resource X1 being held by T2.
However, T2 can release this resource only by getting access to another resource X2

which in turn is held by T1. Thus, none of them can proceed with their execution,
thereby leading to an indefinite deadlocked situation.

2.3.3 Branch-Free Code Technique

Before exploring into the branch-free code optimization technique, we begin with the
pipelining of CPUs and then explain control hazards and branch prediction techniques
in the following paragraphs to illustrate the need for such optimization techniques.
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CPU Pipelining

Pipelining in CPU is a technique in which an instruction execution can be viewed as
pipelining of several stages with each stage executed in one CPU Cycle (two times the
frequency of a master clock). In this way, multiple instructions may be filled into the
pipeline leading to a simultaneous execution of all such instructions [Hei11]. We depict
the architecture of a classic RISC (reduced instruction set computer) pipeline consisting
of a five-stage CPU pipelining mechanism in Figure 2.8. We describe each stage of the
CPU pipelining as below.
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Figure 2.8: Five-stage CPU pipelining of depth 2 (RISC Pipeline)

• Instruction Fetch (IF) fetches the instruction into the instruction cache and
increases the program counter (PC) by one. At this stage, the translation look
aside buffer (TLB) performs the instruction memory mapping from virtual to
physical memory addresses [Hei11].

• Instruction Decode (ID) decodes the fetched instruction and reads the operands
required for the execution from respective registers [Hei11].

• Execution (EX) is a stage in which the arithmetic logic unit (ALU) calcu-
lates the memory address required for various register-to-register and register-
to-immediate operations (For example, load and store operations). In case of
branching instructions, the ALU executes the actual branch to determine its out-
put condition [Hei11].

• Memory (MEM) is a stage in which the actual loading and storing of data
across various registers are performed. However, this stage does not perform any
operation that alters the actual register data [Hei11].

• Write Back (WB) is the final stage of the CPU pipelining in which the result
of the instruction execution is written back to respective registers. In case of a
branch instruction, this stage appears to remain idle since instructions of this type
do not produce any output to be written to the memory [Hei11].
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Control Hazards

Control Hazard is a common type of problem that occurs in a pipelined CPU archi-
tecture when the instruction to be pipelined is a branch instruction (more specifically
conditional branches such as if-else statements). Instructions of this type usually can
have more than one output. However, the CPU cannot detect the output instruction in
advance, i.e., at the time of fetching the main branch instruction. As a result, control
hazards force re-fetching of instructions based on the result of the branch instruction.
We illustrate this situation with a simple example for a conditional branch instruction
in Figure 2.9. Here, we assume that the instruction i is a conditional branch instruction
which is detected as a branch during the instruction decode stage (ID) and decoded
to true or false by the ALU during the execution stage (EX). At this point, the CPU
fetches the target instruction determined by the branch result and hence, the instruction
i+1, the immediate instruction after i, is stalled for a total of three cycles.
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Figure 2.9: Control hazards

Branch Prediction and Predication - Branch-Free Code

In order to overcome the problems faced due to control hazards, modern CPU archi-
tectures are implemented with built-in branch predictors. These predictors maintain
a history of branching instructions based on data distribution in the past and hence
attempt to predict the outcome of a branch. Thus, these architectures decide whether
to include or omit the depending instruction of a branch output based on their predic-
tion. However, such branch predictions made by modern CPUs are not guaranteed to
be accurate at all times. Ross claims that for a given period of time, if an instruction
is included only 50% of the whole time period based on branch prediction, then the
same percentage of mispredictions are likely to occur [Ros04]. Branch mispredictions
are very costly, since every time when a prediction fails, an instruction in need has to
be re-fetched after flushing the pipeline, thereby substantially reducing the instruction
throughput [BBS14]. An optimized solution in this case would be to convert the condi-
tional branch statements of a program into data dependencies, i.e., removal of branches
by means of branch-free code technique. This procedure is known as predication [Ros04].
In Listing 2.3 on the facing page, we show an example of the predication mechanism
for a simple database scan operation.
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Listing 2.3: Branching code vs. branch-free code

1
2 // a [ ] − input array
3 // res [ ] − r e s u l t array
4 // comp val − va lue f o r comparison
5 // pos − po s i t i o n o f r e s u l t array
6
7 // Branching Implementation
8 for ( int i = 0 ; i < to ta l num tup le s ; i++)
9 i f ( a [ i ] < comp val )
10 r e s [ pos++]=i ;
11
12 // Branch−Free Implementation
13 for ( int i = 0 ; i < to ta l num tup le s ; i++)
14 r e s [ pos ] = i ;
15 pos += (a [ i ] < comp val ) ;

The major disadvantage of a branch-free code optimization technique is that it does not
provide an efficient solution over its branching instruction counterpart in all situations
due to the execution of a large number of instructions in the corresponding branch-free
code [BBS14]. Thus, Kenneeth A. Ross suspects that branch prediction failures might
pose substantial performance problems for any CPU architecture over the next few
generation [Ros04].

2.4 Summary

To summarize, in this chapter, we first presented a brief introduction about main-
memory database systems and their distinctions from a regular disk-resident database
system. Then, we explained various properties of main-memory database systems in-
cluding their storage and processing models. Further, we also presented a detailed
working principle of two important in-memory join algorithms in the literature - sort-
merge join and hash join, along with their recent trends with modern architectural
changes. Finally, we gave a brief explanation about the importance of code optimiza-
tion techniques, followed by a detailed explanation of those techniques adopted as part
of our thesis work.
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3. Radix Join

Over the last few years, two diverging approaches have been proposed in the context
of main-memory hash join algorithms. According to these two approaches, hash join
algorithms can be grouped into two broad categories – hardware-conscious joins (e.g.,
partitioned hash join) and hardware-oblivious joins (e.g., canonical hash join). The
former assumes that tailoring the algorithm carefully to hardware parameters of the
underlying architecture (e.g., cache memory capacities, TLB entries, memory band-
width) results in optimal performance of the algorithm. Contrary to this, the latter
assumes that such tailoring requirements are not needed due to the capability of the
modern hardware in hiding latencies caused by cache and TLB misses without affecting
the performance. Teubner et al. confirm that for increasing sizes of the joining rela-
tions, hardware-conscious join algorithms results in better performance than hardware-
oblivious join algorithms [BTAÖ13].

In this chapter, we explain radix join, another type of hardware-conscious joins, on
which we study the performance of code optimization techniques discussed in the pre-
vious chapter. For this, we start with the need for the radix join in Section 3.1, followed
by its working principle in Section 3.2.

3.1 Disadvantages of Canonical and Partitioned Hash

Joins

The hash join algorithms that we discussed in the previous chapter, canonical hash join
and partitioned hash join, suffers from various disadvantages as mentioned below:

• As mentioned in the previous chapter, a canonical hash join executes a join algo-
rithm in two phases – build and probe. The algorithm creates a single hash table
for the entire inner relation in the build phase, to which the individual tuples of
the outer relation are then scanned and probed for joining partners in the probe
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phase. The main disadvantage of this approach is that it leads to a large number
of random-memory accesses during probing. Further, when the size of the hash
table being created exceeds the cache memory capacity, the total number of cache
misses increases significantly affecting the overall execution performance of the
algorithm [BTAÖ13].

• A partitioned hash join, in analogous to the canonical hash join, avoids the cache
miss problem by introducing an extra phase called partition phase. In this phase,
the algorithm partitions both relations into a number of clusters or partitions
with their sizes falling within the capacity of the cache memory. Once all par-
titions are created, build and probe operations are executed as before for each
pair of partitions. Thus, individual hash tables created for each partition sat-
isfy the cache memory limits. However, the algorithm is prone to serious TLB
misses if the number of partitions created exceeds the total number of available
TLB entries. Therefore, for every partition whose mapping history is not already
contained in the TLB buffer, a separate TLB caching mechanism need to be
performed [BTAÖ13].

To overcome both these problems in a single join algorithm, radix join is proposed.

3.2 Principle of Radix Join

A radix join is a special type of partitioned hash join in which the join algorithm is
self-tuned in such a way that the number of partitions created does not exceed the total
number of TLB entries. Thus, the number of available TLB entries serve as an upper
bound for the total fan-out of partitions for the algorithm. Further, the algorithm also
reduces the number of random-memory accesses [BTAÖ13]. Similar to a partitioned
hash join, a radix join algorithm is also executed in three phases - partition phase, build
phase and probe phase. In Figure 3.1 on the next page, we depict an overview of a two
pass radix join. We describe the working logic of the entire radix join in the following
subsections. For our convenience, we refer build and probe phases together as join
phase in the remainder of this thesis.

3.2.1 Partition Phase

The basic idea behind radix join is to perform a different kind of partitioning called
radix partitioning or radix clustering. In this method, the algorithm uses a pre-defined
number of bits called radix bits for partitioning the entire input relation in a sequence
of multiple passes Pi. The task of assigning tuples to individual partitions in each pass
is based on the use of a hash function h1,i(K) which determines the partition number
to which an individual tuple should be stored. For each pass Pi, the hash function
h1,i(K) uses a different set of radix bits and generates equivalent hash values for all the
incoming relation tuples (more specifically, the keys). These hash values indicate the
partition numbers relative to relation tuples.
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Figure 3.1: Two-pass radix join – adopted from [BTAÖ13]

Let B denote the total number of radix bits used for the entire partitioning phase.
Then, the hash function h1,i(K) in each pass Pi uses Bi bits starting from the left such
that

∑
Bi = B. The number of partitions obtained from a cluster C at the end of each

pass is given by Ni(C) = 2Bi . Therefore, the total number of partitions at the end of
the entire partition phase of a radix join will be 2B.

In Figure 3.2 on the following page, we show an example of a radix clustering for a
simple two-pass radix join. Here, we set the number of radix bits to 3. Thus, the
total number of partitions created from applying the algorithm over the relation R
(which is assumed to be a single cluster or partition itself) at the end of the first pass
with the hash function h1,1(K) using the leftmost one bit will be 2. The second pass
then recursively applies the algorithm to each partition created during the first pass
such that the hash function h1,2(K) uses the remaining two bits of the total radix bits.
Therefore, the total number of partitions created at the end of the second pass and con-
sequently the partitioning phase will be 8. Thus, the relation tuples will be re-ordered
during every pass. An important property of the radix join is that if the number of
passes is set to one, then the algorithm behaves like a simple partitioned hash join.
For a typical main-memory database join operation, a two-pass radix join will be suffi-
cient [BTAÖ13, Man02].
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Figure 3.2: Two-pass radix partitioning (using 3 bits)

Manegold et al. indicate three parameters that determine the optimal performance of
a radix join [Man02]. They are as follows:

1. Number of passes used (P).

2. Total number of bits (B) used for the entire partitioning phase.

3. Number of bits (Bi) considered for each pass Pi.

The above parameters should be carefully tuned to the underlying hardware such that
the number of partitions (2B) is smaller than the total number of available TLB entries
and cache-lines. In this way, a radix join can avoid both cache and TLB misses, at
the same time reduces the number of random accesses to the main-memory. Teubner
et al. argue that using two passes with 14 or 11 bits for Intel and AMD architectures
during the entire partitioning phase refines the partition size in each pass such that
each resulting partition fits well in the cache and reduces the overall memory costs
involved [BTAÖ13]. Further, even distribution of radix bits Bi in each pass reduces the
maximum number of bits used per pass which in turn keeps the number of partitions
to be filled during each pass within the TLB entry limits [Man02].

Another major advantage of the radix join is that the algorithm does not require the
need of strict boundaries placed between each partition. This is because, the relation
is ordered on radix-bits such that each key will have the same B lowest bits for its
hash value, and therefore each partition appears consecutively with a cardinality of
|R|/2B. Thus, a radix join avoids the overhead of using additional data structures for
implementing partition boundaries [Man02]. This can also be seen in Figure 3.2, where
each partition appears one below the other without any visible partition boundaries.
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3.2.2 Join Phase (Build and Probe)

Once partitions for input relations are created, a canonical hash join algorithm com-
prising of both build and probe phases is applied individually between each pair of
partitions Ri and Si (corresponding to two input relations R and S respectively). For
executing the join phase, Manegold et al. proposed the method of classical bucket-
chaining algorithm, while Kim et al. proposed re-ordered histogram-based hash table
algorithm [KKL+09, Man02]. For our work, we use the bucket-chaining algorithm since
the former provides an optimized implementation of the join phase compared to the
latter and even over the latter algorithm optimized with SIMD instructions.

Classical Bucket-Chaining Algorithm

The principle behind a classical bucket-chaining algorithm, in the context of radix join,
is to maintain a data structure called buckets for implementing the hash table for every
partition Ri during the build phase. Then, a user-defined hash function h2(K) is applied
on keys contained in Ri to produce an integer hash value. This value indicates to which
bucket the key should be placed. A bucket collision is said to occur when more than one
key corresponds to the same bucket. In this case, the colliding keys are inserted into
another data structure called next and all these colliding keys are chained together by
means of a linked list [KKL+09, BTAÖ13, ZHB06]. A good hash function is one that
results in a uniform distribution of hash values. However, implementing such function
is not an easy task in all situations. A traditional method of implementing the hash
function is to use an integer modulo operation on the incoming keys to obtain the
hash value. We show a simple example of a bucket-chained hash table representation
in Figure 3.3, where we use the hash function key mod 10. It can be seen that collision
occurs in the 0th bucket since keys 120, 140 and 190 represent the same hash value.
Hence, keys 120 and 190 are inserted into the next data structure and all these colliding
keys are chained together by a linked list connected to this bucket.
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Figure 3.3: Classical bucket-chained hash table

Once the hash table is built, probing is done by applying the same hash function h2(K)
on keys contained in partitions Si. The result of the hash function now indicates the
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bucket number to which this key should be compared. Thus, in this case, the key should
be probed with all the individual entries chained together by the linked list referenced
by the bucket for finding a matching join partner [Man02]. Thus, in the example shown
in Figure 3.3 on the previous page, any key in Si with a hash value 0 should be probed
with 120, 140 and 190 for a possible join partner.

Improved Hash Funcition

Manegold et al. argue that use of hash functions for h2(K) as mentioned above are very
expensive since they cost around 40-80 CPU cycles on modern architectures [Man02].
Hence, they adopted an alternative method in which the number of hash buckets (N ) is
set to a power of 2, i.e., N = 2i. Thus, they replaced the costly modulo operation by a
cheap bitwise AND operation between the key and N-1. Their results confirm that the
newly implemented hash function improves the overall performance of the algorithm by
four times. The hash function can be represented as below:

h2(K) = (Key AND N-1) [Man02]

With this hash function h2(K), the process of probing can be done in a similar fashion
as mentioned earlier.

Improvements to Bucket-Chaining Algorithm

Teubner et al. replaced the concept of linked list representation by means of array
position indexes such that both the bucket and the next data structure are implemented
by means of plain C arrays [BTAÖ13]. We represent the above example using this
method in Figure 3.4.
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Figure 3.4: Improved bucket-chained hash table – adopted from [BTAÖ13]

In this method, all the individual entries in the bucket and the next arrays are initialized
to -1. An entry in the bucket consists of the index of the tuple key instead of the actual
key value. In case of a bucket collision, the current bucket value is inserted into the next
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array of the key that causes collision and the bucket entry is updated with the index of
this key. Thus, in the above example, the bucket number 0 is updated with the index
of its most recent key 140 and the next array of this key is updated with the previous
value in this bucket, i.e., 3, the index of the key 190. Therefore, to perform a probe,
the partition keys with index values corresponding to the bucket and the next entries
are looked up recursively as long as the value in the next array is greater than -1. For
instance, in Figure 3.5, we show the steps required to perform a probe operation for the
key 120. For sake of simplicity, we omit the mapping between the partition Ri and its
corresponding bucket entries. The steps for probing are explained in detail as below:
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Figure 3.5: Improved bucket-chained hash table – lookup for 120

1. The hash value of the key 120 is 0. A lookup on this bucket gives the index of Ri

(5 ) for starting the process of probing.

2. The Ri value corresponding to the index 5 is not equal to 120 and at the same
time, its corresponding next value is greater than -1, which in this case is 3. Thus,
another lookup is performed on Ri corresponding to the index 3 which again gives
a non-match.

3. Finally, a lookup is performed on the next value of Ri with index 3, the output
of which is 2. The Ri value relative to the index 2 is 120 and hence, a match is
obtained. Further lookups are stopped since the next value corresponding to the
most recent index (2 ) is -1.

Teubner et al. argue that, for any in-memory hash join operation, performing a probe us-
ing this method provides an efficient performance over the previous method [BTAÖ13].
For our implementation of the radix join, we use this method for performing the probe
along with the build in the join phase.
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4. Implementation of Optimization
Techniques

We now turn our attention to the actual implementation of various code optimization
techniques that we discussed in the previous chapter (vectorization, parallelization and
branch-free coding) to the scalar radix join algorithm. In addition, we also aim at
implementing a combination of these individual optimization strategies that are found to
provide improvement to the scalar version. Hence, we can identify all possible variants
within the context of these optimization strategies that have a positive influence for
a radix join. For a standard serial radix join, several versions are proposed in the
literature [BLP11, Man02, BTAÖ13]. We adopt one of these versions with certain
changes as a starting point for the application of our optimization techniques.

In this chapter, we begin with the explanation of a set of preliminaries adopted for our
implementation in Section 4.1. Then, in Section 4.2, we present an overview of our
scalar version that we further use for our work. Finally, in Section 4.3 and Section 4.4,
we explain our approach of applying the optimization techniques (both individual and
combination) to each phase of the radix join.

4.1 Preliminaries

Framework

For our experiments, we use the Column-oriented GPU-accelerated DBMS (CoGaDB)
for implementing the optimization techniques. CoGaDB is a main-memory database
management system developed at the University of Magdeburg. The main purpose of
this database system is to provide a hybrid environment (CPU/GPU platforms) with
database operators needed to achieve optimal performance during query processing.
The database uses column-oriented approach for its data storage and operator-at-a-
time strategy as its data processing model. The system is implemented using C++ and
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Cuda C languages. Hence, we use C++ language for our implementation. Further, we
also use various features (for example, smart pointers for the storage of join results)
offered by this system for our work. A detailed explanation of CoGaDB can be found
at the corresponding website 1.

Experimental Setup

For the application of our optimization techniques, we consider columns or attributes
with 32 -bit integer data items. CoGaDB stores these columns using simple C arrays
instead of STL containers or structures for performance reasons. As mentioned already,
we use C++ language for our implementation and GNU C++ compiler 4.6.4 for com-
piling our implemented radix join variants. Once the join processing is over, we store
the join results in a Binary Association Table (BAT). For this, we use the abstract
pointer, PositionListPairPtr, offered by CoGaDB. Here, we extract and store Row-IDs
(RIDs) of matching tuples from join columns of both input relations using which the
subsequent tuple reconstruction can be performed. However, efficient tuple reconstruc-
tion is not part of our work and, thus, not further discussed here. Regarding the type
of the join, we consider a simple equi-join (join condition with predicates of the form
θ=A) for all our radix join variants.

4.2 Serial Radix Join

For applying all our optimization techniques, we adopt the serial implementation of
the radix join proposed by Teubner et al. [BTAÖ13]. Their implementation is publicly
available at their website 2. However, we make certain changes to the existing code for
our work as explained below:

• The versions of the scalar radix join proposed by Teubner et al., Blanas et al., Kim
et al. and Manegold et al. use 64 -bit wide integer tuples of the form (key,value)
stored together in structures [BLP11, Man02, KKL+09, Man02]. Since our frame-
work (CoGaDB) is based on column-oriented storage of data items, we consider
only the storage of 32 -bit integer keys. This allows the storage of keys in contigu-
ous memory locations which provide several benefits as mentioned in Chapter 2
under column-oriented storage model. Further, storage of keys in this fashion
proved to be advantageous for the application of our vectorization techniques.
We explain them later in this chapter.

• All versions of the scalar radix join that we mentioned above do not consider the
storage of join results. Instead, their implementations are based on counting the
number of matches obtained as a result of performing the join between two input
relations. However, in our implementation, we store the position of matching
tuples of both input relations from join operation. For this, we extract the RIDs

1http://wwwiti.cs.uni-magdeburg.de/iti db/research/gpu/cogadb
2http://www.systems.ethz.ch/projects/paralleljoins

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb
http://www.systems.ethz.ch/projects/paralleljoins
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of the original input keys (before partitioning) at run-time and store them along
with their respective keys in separate plain C arrays.

We now present an overview of the partition phase and the join phase of the serial radix
join implementation that we adopted from Teubner et al. [BTAÖ13] in the following
sub-sections.

Partition Phase

As mentioned in Chapter 3, using two passes for a radix join will be sufficient for a
typical main-memory database to create cache-sized partitions for probing. Further,
use of 14 or 11 bits is sufficient to significantly avoid a large number of cache and TLB
misses in Intel and AMD architectures. For our implementation, we set the number of
radix bits to 14. However, a potential misconfiguration of radix bits between these two
options would not have a major impact on the performance of the algorithm [BTAÖ13].
We mentioned in Chapter 3 that with B bits, the total number of partitions or clusters
obtained at the end of the entire partitioning phase will be 2B. Thus, in our case, we have
16384 partitions (214). Teubner et al. confirm that by performing a radix partitioning
with this configuration, we significantly reduce the number of cache misses as well as
TLB misses compared to the implementation of Blanas et al. with 2048 partitions
created with a single pass [BTAÖ13, BLP11]. Note that the cost of the partition phase
increases with increasing number of partitions. However, it significantly reduces the
size of all partitions which allows the join operation to be performed even faster with
partitions confirming to cache memory limits. Further, using 14 or 11 bits does not
have a major problem on TLB configuration requirements (store and load TLB misses)
in modern architectures supporting a TLB capacity of 512 page entries (at L3 level).

Listing 4.1: Partition phase – scalar implementation
1
2 // Pre l iminary Step : Determine th e number o f p a r t i t i o n s
3
4 // tpp − number o f t u p l e s per p a r t i t i o n
5 // d e s t [ ] − Memory a l l o c a t e d f o r s t o r a g e o f p a r t i t i o n s ( keys )
6 // d e s t p o s [ ] − Memory a l l o c a t e d f o r s t o r a g e o f p a r t i t i o n s ( p o s i t i o n s )
7
8 //Determine th e number o f t u p l e s in each p a r t i t i o n
9 for (unsigned int i =0; i<num tuples ; i++)

10 {
11 part i t ion number = rad ix hash ing ( key ) ;
12 tpp [ part i t ion number ]++;
13 }
14
15
16 // A l l o c a t e memory f o r each p a r t i t i o n based on the count de termined above
17
18 // S to re t h e keys in t h e i r r e s p e c t i v e p a r t i t i o n s
19 for ( unsigned int i =0; i<num tuples ; i++)
20 {
21 part i t ion number = rad ix hash ing ( key ) ;
22
23 ∗dest [ part i t ion number ] = ∗key ;
24 ++dest [ part i t ion number ] ;
25
26 ∗ de s t po s [ part i t ion number ] = ∗ po s i t i o n ;
27 ++des t po s [ part i t ion number ] ;
28
29 }

We show an overview of the serial radix join implementation in Listing 4.1. For parti-
tioning the input relation, we use the concept of radix partitioning, i.e., in each pass,
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we use the leftmost 7 bits for determining the number of partitions and our hash func-
tion uses the same number of bits for assigning the individual tuples (32 -bit keys) to a
particular partition. Once we set the number of partitions using this configuration, we
perform the partitioning phase in three steps as below:

1. Determine the number of keys in each partition - computation of local histogram
for each partition (prefix-sum) (lines 9-13 ).

2. Allocate the memory for each partition based on the number of keys determined
in the previous step (line 16 ).

3. Store the actual keys to their respective partitions (lines 19-29 ).
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Figure 4.1: Serial radix partitioning

In each pass Pi, we apply the radix hash function h1,i(K) on the incoming keys of
the input relation. The output of this hash function determines the partition number
to which the key should be placed. Hence, we update the tuple counts of partitions
relative to the partition number. Once we determine the tuple counts for all partitions,
we allocate the memory for each partition based on these counts, followed by which we
store the actual keys. In Figure 4.1, we show a simple example for the whole idea behind
serial radix partitioning. In this example, the relation keys 89, 25 and 97 belong to
partition 0 (determined by h1,i(K)). Using the prefix-sum technique, the tuple count
of this partition is updated to 3 based on which the memory is allocated to store the
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corresponding keys. Finally, all the three keys are stored in partition 0. The partition
2 does not contain any keys and hence, no memory space is reserved for it (denoted in
grey in Figure 4.1 on the preceding page).

Note that along with the actual keys, we perform the partitioning even for their respec-
tive positions (lines 26 and 27 ), i.e., we store even the relation RIDs of the tuple keys in
a separate set of partitions using the partition number obtained as a result of perform-
ing the radix partitioning over their respective keys. Therefore, the partition number
and the partition RID (position of a key in a partition) will be the same for keys and
their respective positions. Thus, during the join phase, we do not build a separate hash
table for partitions filled only with relation RIDs and they can be extracted by simply
retrieving the partition RIDs of their respective keys using entries in the hash table.
Hence, with extremely smaller sized partitions for keys and their respective positions,
we do not conflict the cache miss avoidance property of the radix join.

Join Phase (Build and Probe)

The implementation of Teubner et al. performs build and probe together for each set
of partition pairs Ri and Si (corresponding to two input relations R and S ) [BTAÖ13].
Thus, once all partitions are created for R and S, we check the number of tuple keys
in both partitions belonging to each pair and then send them to the join phase only if
their respective tuple counts are greater than zero. Thus, we reduce the total number
of unnecessary probing. This principle is slightly different from the implementation of
Blanas et al. where the build is first performed for all Ri (smaller partitions) and then
probing is carried out separately for each set of partition pairs. This increases the num-
ber of memory trips since the partition Ri need to be accessed from the main-memory
during both build and probe phases [BLP11, BTAÖ13]. Note that while sending each
partition pair to the join phase, we send partitions filled with relation RIDs along with
partitions filled with keys.

Listing 4.2: Join phase – scalar implementation
1
2 // R pa r t i t i o n , S p a r t i t i o n − p a r t i t i o n s w i th key s
3 // R po s p a r t i t i o n , S p o s p a r t i t i o n − p a r t i t i o n s w i th r e l a t i o n RIDs
4 // R t i d s , S t i d s − ar ray s to s t o r e p o s i t i o n s o f matching keys ( Po s i t i o nL i s tP a i rP t r )
5
6 // b u i l d
7 for (unsigned int i =0; i<num R part i t ion ; )
8 {
9 bucket number = Hash ( R pa r t i t i on [ i ] ) ;

10 next [ i ] = bucket [ bucket number ] ; // f o r r e f e r e n c i n g keys
11 bucket [ bucket number ] = ++i ;
12 }
13
14 // probe
15 for (unsigned int i =0; i<num S part i t i on ; i++)
16 {
17 bucket number = Hash ( S p a r t i t i o n [ i ] ) ;
18 for ( . . . ) // probe a l l R keys w i th same buc k e t number
19 {
20 // i d − p a r t i t i o n RID r e f e r e n c e d by t he bu c k e t number
21 i f ( R pa r t i t i on [ id ] == S pa r t i t i o n [ i ] )
22 {
23 // we s t o r e t h e RIDs o f matching key s
24 R t ids [ pos ] = R pos par t i t on [ id ] ;
25 S t i d s [ pos ] = S po s p a r t i t i o n [ i ] ;
26 pos++;
27 }
28 }
29 }
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The implementation of Teubner et al. consists of both classical bucket chaining join al-
gorithm and re-ordererd hash table algorithm for carrying out the join phase [BTAÖ13].
As mentioned in Chapter 3, we adopt the classical bucket chaining algorithm for our
work. We show this implementation in Listing 4.2 on the preceding page. We explain
the build and probe of the join phase one by one below:

• Build - For performing the build, Teubner et al. first created the hash table for
Ri. For this, they adopted the strategy proposed by Manegold et al. [Man02,
BTAÖ13]. Accordingly, the number of buckets in the hash table is set to a power
of 2 (N=2i) and the hash value for an individual key is determined using the hash
function based on a bitwise AND operation between the key and N-1 instead of
a modulo hash function. We explained this hash function in detail in Chapter 3.
Further, they replaced the concept of pointers by plain arrays with position in-
dexes for referencing tuples of Ri in order to achieve an efficient main-memory
algorithm design (lines 7-12 ). Hence, the hash table is filled with partition RIDs
of keys belonging to Ri.

• Probe - Once the hash table is built, the same hash function is applied over keys
of Si partitions to determine the hash value or the bucket number for probing.
Then, keys of Si are compared with keys of Ri referenced by the bucket number
for determining a match (lines 15-21 ). As we discussed earlier, at this step, the
implementation of Teubner et al. store only the number of matches [BTAÖ13].
However, for our implementation, we retrieve the original positions (relation RIDs)
of matching keys and store them in separate arrays of type PositionListPairPtr,
an abstract smart pointer offered by CoGaDB (lines 24 and 25 ). Using this
array, the tuple re-construction can be performed for retrieving the entire tuple
corresponding to joined attribute values.

Now, we have our serial radix join with certain changes from Teubner’s implementation
to meet our needs. Using this implementation, we apply our optimization techniques
for studying their performance behavior for an in-memory radix join technique.

4.3 Individual Optimizations

In this section, we explain how we apply the discussed optimization techniques individ-
ually to each phase of the radix join. Accordingly, we first explain our approach to the
partition phase in Section 4.3.1, followed by the join phase in Section 4.3.2.

4.3.1 Partition Phase

For optimizing the whole partition phase, we apply our optimization techniques to steps
1 (local histogram) and 3 (storage of partition tuples) mentioned in Section 4.2. We
do not change any settings in parameters used for a serial radix join that configure
the partitioning stage such as the number of passes or the fraction of radix bits used
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in each pass. Moreover, our implementation of the serial radix join does not contain
any conditional branches in the partition phase. Therefore, we implement branch-free
code optimization technique only for the join phase. Thus, in this section, we discuss
vectorization and parallelization strategies for the partitioning stage in the following
subsections.

4.3.1.1 Vectorization

Listing 4.3: Partition phase – vectorized implementation
1
2 //Determine th e number o f t u p l e s / key s in each p a r t i t i o n
3 for (unsigned int i =0; i<s imd num tuples ; i++)
4 {
5 m128i part i t ion number = s imd rad ix hash ing ( s imd keys ) ; // 4 p a r t i t i o n numbers
6 tpp [ ( ( int ∗)&part i t ion number ) [0 ] ]++;
7 tpp [ ( ( int ∗)&part i t ion number ) [1 ] ]++;
8 .
9 .

10 }
11
12 // s e r i a l p r o c e s s i n g f o r remaining key s t h a t do not f i t in one comp le t e SIMD r e g i s t e r
13
14 // A l l o c a t e memory f o r each p a r t i t i o n based on the count de termined above
15
16 / Store the keys in t h e i r r e s p e c t i v e p a r t i t i o n s
17 for ( unsigned int i =0; i<s imd num tuples ; i++ )
18 {
19 m128i part i t ion number = s imd rad ix hash ing ( s imd keys ) ;
20
21 // u n r o l l f o r a l l SIMD keys
22 ∗dest [ ( ( int ∗)&part i t ion number ) [ 0 ] ] = ∗ s imd keys [ 0 ] ;
23 ++dest [ ( ( int ∗)&part i t ion number ) [ 0 ] ] ;
24
25 ∗ de s t po s [ ( ( int ∗)&part i t ion number ) [ 0 ] ] = ∗ s imd po s i t i on s [ 0 ] ;
26 ++des t po s [ ( ( int ∗)&part i t ion number ) [ 0 ] ] ;
27
28 ∗dest [ ( ( int ∗)&part i t ion number ) [ 1 ] ] = ∗ s imd keys [ 1 ] ;
29 ++dest [ ( ( int ∗)&part i t ion number ) [ 1 ] ] ;
30
31 ∗ de s t po s [ ( ( int ∗)&part i t ion number ) [ 1 ] ] = ∗ s imd po s i t i on s [ 1 ] ;
32 ++des t po s [ ( ( int ∗)&part i t ion number ) [ 1 ] ] ;
33
34 .
35 .
36 .
37 }
38
39 // Remaining keys p ro c e s s e d in a s e r i a l f a s h i o n

As mentioned in Chapter 2, we apply SIMD techniques (data-level parallelism) via C++
SSE instruction sets for implementing our vectorized radix join algorithms. To benefit
from these SIMD techniques, a programmer must take care with explicit handling so
that the overall performance of the resulting algorithm is not sacrificed [Bik04]. For
our approach, we use this idea for writing the vectorized partition code. Therefore, we
apply vectorization only to code areas where SIMD instructions give an advantage over
its serial counterpart. We sketch an overview of the code (integer implementation) for
this approach in Listing 4.3.

As stated earlier, we perform the partitioning in three steps. As a preliminary step,
we first determine the number of partitions in each pass and then perform the steps
required for partitioning the input relations. Accordingly, we fill the SIMD register with
relation keys and then apply the hash function for radix partitioning (line 5 ). Since
we implement our optimization algorithms for 32 -bit integers, we use 128 -bit SIMD
registers that can hold four 32 -bit (4 bytes) keys at a time. Note that our SIMD im-
plementation is slightly different from the implementation proposed by Kim et al. for
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sort-merge join and hash join where only two tuples can be processed simultaneously
because of the 64 -bit (key,value) tuple structure [KKL+09]. Our serial radix hash func-
tion for computing the partition number consists of two different operations - Bitwise
AND followed by a logical right shift operation between the input key and the fraction
of radix bits used in each pass for partitioning. To convert this into an equivalent vector
form, we use the intrinsics _mm_and_si128 and _mm_srli_epi32 that determines the
partition number for four different tuples/keys at the same time. However, the process
of updating the partition tuple counts (prefix-sum) cannot be done here in a SIMD
fashion. We know that any single SIMD operation on 32 -bit integers can be viewed
as a simple loop unrolling of depth 4 combined with SIMD capability. Thus, for our
implementation, once we compute the partition numbers in a SIMD fashion, we unroll
the further processing inside the respective for loops until we reach a depth of 4, i.e.,
we serially update the partition tuple counts for four different keys on which the SIMD
radix hash partitioning is applied (lines 6-9 ).

Once we determine the partition tuple counts, we need to allocate memory for all par-
titions and then store the corresponding keys and positions (RIDS) in these memory
locations. However, this step cannot be processed using SIMD instructions since differ-
ent partitions reside in different memory locations and hence, SIMD keys (four 32 -bit
keys) and their corresponding SIMD positions (four 32 -bit relation RIDs) need to be
scattered to non-contiguous memory addresses. But, we know that SIMD architectures
do not support scatter storage of data and therefore, we perform this step in a serial
manner. Thus, as before, we use SIMD instructions only to compute partition numbers
for four different keys simultaneously, followed by which we perform the remaining steps
in a scalar fashion. In lines 21-36, we show this step for storing four different keys and
their corresponding RIDs to their respective partitions.

Thus, in our vectorization approach, we combine the use of SIMD instructions along
with a loop unrolling of depth 4 (for 32 -bit integers). Therefore, we avoid the limitations
suffered by a general hash join because of SIMD scatter operations as mentioned by
Kim et al. [KKL+09].

4.3.1.2 Parallelization

We now explain how we apply thread-level parallelization concepts to the partition
phase of the radix join. In this section, we give an overview about the support provided
by C++ for multithreading, followed by our approach to apply them for partitioning
the input relations.

Multi-threading in C++

The concept of multi-threading is supported in C++ using the standard library thread.h.
However, not all versions of C++ enable the use of this library since it is implemented
only for C++ 11 and higher standards. For our work, we make use of the thread-
ing functionalities using boost libraries which is portable in lower C++ standards. A
detailed explanation of C++ boost libraries for multi-threading can be found in [Wil07].
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Shared Partitioning

As mentioned in Chapter 2, we use the principle of data decomposition for parallelizing
the radix join, i.e., we parallelize the partition phase and the join phase separately since
both these phases have a sequential flow between them. We set the number of threads
equal to the number of CPU cores, i.e., for each available CPU core, we use at most
one thread so that each thread divides the whole partitioning task among them. This is
because using more than one thread per core (Simultaneous multi-threading) degrades
the performance especially in the SMT region due to the sharing of physical resources
such as caches(L1 ) and TLBs among threads respective to each core [BATz13].
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Figure 4.2: Shared partitioning using 2 CPU core threads

For partitioning the input relation in each pass, we use the concept of shared partitioning
proposed by Teubner at al., i.e., each thread works on a different subset or sub-relation
of the entire relation and then update its own partition tuple count, i.e., we perform a
thread-relative prefix-sum. Thus, in every partition, we determine the number of tuple
keys corresponding to each worker thread. Then, using these partition tuple counts,
we reserve a range of memory for each thread in every available partition and then
allow all worker threads to write their keys in their own reserved partition memory in
a parallel fashion. In this way, we avoid the contention for memory resources and allow
worker threads to perform their tasks without any need for synchronization [BTAÖ13].
In Figure 4.2, we show a simple example of shared partitioning using two threads.
In this example, the key 63 is allocated to thread 1, whereas keys 127, 103 and 39
are allocated to thread 2. However, all these keys belong to partition 3. Hence, the
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respective partition tuple counts for each thread in this partition is updated using the
prefix-sum technique in a parallel fashion. Thus, the counts of thread 1 and thread
2 in this case are 1 and 3 respectively. Based on these counts, a separate memory
is allocated for each of these two threads in partition 3. Finally, each thread writes
their respective keys to their corresponding memory in this partition again in a parallel
fashion.

In Listing 4.4, we show our implementation for parallelized radix partitioning. Lines 4-8
shows how each thread updates the number of tuples relative to them in a particular
partition. Once we perform this step in parallel, we allocate the memory for each thread
in every available partition as mentioned earlier, following which we set each thread to
perform the task of storing keys and positions (RIDs) in parallel without synchronizing
them (lines 15-25 ). Note that we use two dimensional arrays for partition tuple counts
and partition memories in contrast to one dimensional arrays used in a serial version.

Listing 4.4: Partition phase – parallel implementation
1
2
3 // each th r ead in p a r a l l e l − de termine t he number o f p a r t i t i o n t u p l e s / key s
4 for (unsigned int i =0; i<thread num tuples ; i++)
5 {
6 part i t ion number = rad ix hash ing ( key ) ;
7 tpp [ th r ead id ] [ part i t ion number ]++;
8 }
9

10
11 // In main program − r e s e r v e thread−based p a r t i t i o n memory based on above count
12
13
14 // each th r ead in p a r a l l e l − s t o r a g e o f key s and p o s i t i o n s
15 for ( unsigned int i =0; i<thread num tuples ; i++)
16 {
17 part i t ion number = rad ix hash ing ( key ) ;
18
19 ∗dest [ th r ead id ] [ part i t ion number ] = ∗key ;
20 ++dest [ th r ead id ] [ part i t ion number ] ;
21
22 ∗ de s t po s [ th r ead id ] [ part i t ion number ] = ∗ po s i t i o n ;
23 ++des t po s [ th r ead id ] [ part i t ion number ] ;
24
25 }

4.3.2 Join Phase

The output of the partitioning phase produces a set partition pairs equal to 2B (16384
in our case). For each partition pair, we check whether the number of tuples (keys)
in both partitions exceeds zero before sending them to the join phase. As mentioned
already, we perform the build and the probe together in join phase instead of having
separate phases for each of the individual partition pairs. The time required for building
hash tables for each partition Ri of the smaller relation is very less compared to the
overall join phase. Hence, we are mainly concerned in applying our code optimization
techniques to the areas where we perform probing. We discuss our method of optimizing
the join phase in the following three subsections.

4.3.2.1 Vectorization

The probing between a partition pair Ri and Si corresponding to two input relations
R and S can be viewed as a simple scan of each key in Si over all keys in Ri with the
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same hash value. In Listing 4.2 on page 41, we show how we perform this scan using
two for loops. For applying our vectorization techniques to the join phase, we identified
two approaches for handling them. We explain them below.

Approach 1

For our first vectorized approach of the join phase, we use SIMD instructions only for
the second for loop in Listing 4.2 on page 41, i.e., for each key in Si, we compute the
hash value (bucket number) and then perform the probing with all Ri keys referenced
by the corresponding bucket. For this, we pack all such Ri keys that fit into a single
SIMD register and then execute the probing. We show this approach in Listing 4.5.

Listing 4.5: Join phase – vectorized implementation (first approach)
1
2 // probe
3 for (unsigned int i =0; i<num S part i t i on ; i++)
4 {
5 m128i comp val = mm set1 epi32 ( S p a r t i t i o n [ i ] ) ;
6 bucket number = Hash ( S p a r t i t i o n [ i ] ) ;
7
8 // s imd b u c k e t l e n g t h = simd l e n g t h o f R keys w i th same buc k e t number
9 for ( j =0; j<s imd bucket l ength ; j++)

10 {
11 m128i rkey = mm set epi32 ( . . . ) ; // pack 4 keys a t a t ime
12 m128i rkey pos = mm set epi32 ( . . . ) ; // pack t h e i r p o s i t i o n s
13 mask = SIMD COMP( rkey , comp val ) ;
14
15 for ( k=0; j<s izeof ( m128i ) / s izeof ( int ) ; k++)
16 {
17 i f ( (mask >> k ) & 1)
18 {
19 // we s t o r e t h e RIDs o f matching key s
20 R t ids [ pos ] = R pos par t i t on [ [ ( ( int ∗)&rkey pos ) [ k ] ] ] ;
21 S t i d s [ pos ] = S po s p a r t i t i o n [ i ] ;
22 pos++;
23 }
24 }
25 }
26
27 // f o r remaining key s w i th t h e same buc k e t number − s e r i a l p r o c e s s i n g
28 }

Thus, in Listing 4.5 (starting from line 11 ), we pack all Ri keys with the same hash value
into a single SIMD register using the SSE intrinsic _mm_set_epi32. In addition, we also
pack their respective relation RIDs into another SIMD register. Once the elements are
packed, we perform a SIMD comparison, i.e., comparison of four Ri keys with a single
Si key and then retrieve a bit mask for each of these comparisons. Using this bit mask,
we then evaluate the individual mask value for each of the Ri keys which determines
whether there is a match with the main Si key from the first for loop. Whenever there
is a match, we store the corresponding relation RID of the Ri key and that of the main
Si key. We perform this approach for all Ri keys with the same hash value until we
reach a multiple of 4 and then perform a serial processing for all the remaining keys
that do not fill a complete SIMD register (line 27 ).

The main disadvantage of this approach is the packing of Ri keys into a single SIMD
register. This is because all Ri keys referenced by the same hash value are not guar-
anteed to reside in contiguous memory locations due to the nature of bucket-chained
hash table. Hence, we need to gather all such keys into a single SIMD register. As
mentioned in Chapter 2, SIMD implementations do not support such gather operations
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and therefore, are prone to serious performance degradation problems. Also, the mask
evaluation performed for SIMD probing is very expensive which further worsens the
overall performance of the probing. Moreover, during our testing process, we found this
approach to produce poor results when compared to the approach that we will dicuss
in the next subsection. Due to these reasons, we do not use this approach as our final
implementation for the vectorized join phase.

Approach 2

To overcome the disadvantages presented above, we adopt a strategy similar to the
vectorized partitioning. We show this approach in Listing 4.6. Thus, in this approach,
we apply SIMD instructions only to the first for loop, i.e., we use SSE intrinsics to
determine the hash value or the bucket number for four different Si keys at the same
time (line 6 ). Then, for each Si key in the SIMD register, we perform the scan in
a serial fashion by unrolling them until we reach a depth of 4 (line 8-40 ). By doing
this, we avoid both gather operations as well as expensive mask evaluation in the first
approach. Hence, we use this approach as our final vectorized implementation for the
join phase.

Listing 4.6: Join phase – vectorized implementation (second approach)
1
2 // probe
3 for (unsigned int i =0; i<s imd length ; i++)
4 {
5
6 m128i bucket num = SIMD HASH( s imd skeys ) ;
7
8 for ( . . . ) // probe a l l R keys w i th hash va l u e bucket num [ 0 ]
9 {

10 // i d − p a r t i t i o n RID r e f e r e n c e d by t h e bucket num [ 0 ]
11 i f ( R pa r t i t i on [ id ] == (( int ∗)&s imd skeys ) [ 0 ] )
12 {
13 // we s t o r e t h e RIDs o f matching key s
14 R t ids [ pos ] = R pos par t i t on [ id ] ;
15 S t i d s [ pos ] = ( ( int ∗)&simd spos ) [ 0 ] ;
16 pos++;
17 }
18 }
19
20 for ( . . . ) // probe a l l R keys w i th hash va l u e bucket num [ 1 ]
21 {
22
23 // i d − p a r t i t i o n RID r e f e r e n c e d by t h e bucket num [ 1 ]
24 i f ( R pa r t i t i on [ id ] == (( int ∗)&s imd skeys ) [ 1 ] )
25 {
26 // we s t o r e t h e RIDs o f matching key s
27 R t ids [ pos ] = R pos par t i t on [ id ] ;
28 S t i d s [ pos ] = ( ( int ∗)&simd spos ) [ 1 ] ;
29 pos++;
30 }
31 }
32
33 .
34 .
35 .
36
37 }
38
39 // f o r remaining key s o f S in a s e r i a l f a s h i o n

4.3.2.2 Parallelization

Similar to a vectorized join phase, we adopt two different approaches for parallelizing
a scalar join phase of a radix join algorithm. In the first approach, we use the idea of
parallelizing the individual join phases of every partition pair, i.e., in each join phase,
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the partition Si is divided among worker threads so that each thread perform the process
of probing between the hash table built for Ri and the portions of Si allocated to them.
In the second approach, we use the idea of parallelizing the overall join phase, i.e., we
divide the total number of available partition pairs among worker threads so that each
thread is provided with their own partition pairs with which they perform independent
join phases. Thus, the former approach parallelizes each join phase at the granularity
of individual partitions, while the latter approach uses parallelization at the granularity
of the total number of partitions, i.e., table granularity. We explain the mechanism of
each approach below in detail.

Approach 1

In the first approach, we use the idea of applying parallelization to the individual join
phase, i.e., join phase of every Ri and Si pair. We depict this approach in Listing 4.7.
Thus, once the hash table is built for Ri, we divide the entire Si among the available
worker threads, i.e., we assign each thread a different subset of Si and then perform the
probing separately in a parallel fashion (lines 5-8 ). Once all worker threads are done
with their individual probing, we need to combine the probe results (matching RIDs)
relative to them. For this, we use the prefix sum technique and determine the respective
memory locations where each thread writes its result in the result array (lines 11-14 )
. Finally, we copy the results of individual threads to these memory addresses in a
parallel fashion (lines 16-21 ).

Listing 4.7: Join phase – parallel implementation (first approach)
1
2 // R r e s u l t s , S r e s u l t s − thread−r e l a t i v e probe r e s u l t s
3 // r e s u l t s i z e − probe r e s u l t s i z e f o r each t h r ead
4
5 for (unsigned int i =0; i<num threads ; i++)
6 {
7 do p a r a l l e l : s e r i a l p r o b e ( S pa r t i t i on , R pa r t i t i on ) ;
8 }
9

10 // p r e f i x s um [ 0 ] = l o c ; // l o c − l a s t index in r e s u l t array o b t a i n ed from pr e v i o u s j o i n phase
11 for (unsigned int j =0; j<num threads + 1 ; j++)
12 {
13 pre f ix sum [ j ] = pre f ix sum [ j −1] + r e s u l t s i z e [ j −1] ;
14 }
15
16 for (unsigned int i =0; i<num threads ; i++)
17 {
18 do p a r a l l e l :
19 memcpy(&R t ids [ pre f ix sum [ i ] ] ,& R r e su l t s [ ] , r e s u l t s i z e [ i ]∗ s izeof (TID) ) ;
20 memcpy(&S t i d s [ pre f ix sum [ i ] ] ,& S r e s u l t s [ ] , r e s u l t s i z e [ i ]∗ s izeof (TID) ) ;
21 }

The main disadvantage of this method is the sharing of hash tables built forRi partitions
since each thread requires the entire hash table to find matches for their assigned Si por-
tions. Thus, the cache memories and consequently the TLBs relative to the hash table
need to be shared among all threads. We already discussed the disadvantages of shared
cache memories such as race conditions and cache-line bouncing in Chapter 2. Further,
the number of tuples in each partition Si is very small compared to the total number
of tuples in the entire relation S. Therefore, in every join phase, each thread performs
probing only for a limited number of tuples. Broneske et al. mentioned that assigning
threads to small jobs of this kind degrades the benefits of parallelization [BBS14].
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Approach 2

We know that all partition pairs obtained as a result of radix partitioning are indepen-
dent, i.e., we perform the build and probe individually for each partition pair instead
of the overall relation. Thus, in this method, we use the idea of parallelizing the overall
join phase instead of individual joins, i.e., we perform a serial joining of all partition
pairs in a parallel fashion. We sketch an overall idea of this approach in Figure 4.3.
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Figure 4.3: Parallel join via task creation with n CPU core threads

Listing 4.8: Join phase – parallel implementation (second approach)
1
2 // R r e s u l t s , S r e s u l t s − thread−r e l a t i v e probe r e s u l t s
3 // r e s u l t s i z e − probe r e s u l t s i z e f o r each t h r ead
4
5 // Af t e r r a d i x p a r t i t i o n i n g i s comp le ted
6 i f ( R pa r t i t i on count >0 && S pa r t i t i on coun t >0)
7 {
8 task ( R par t i t i on , S p a r t i t i o n ) ; // i n s e r t t h e p a r t i t i o n s i n t o t a s k
9 task count++;

10 }
11
12
13 // e v en l y a l l o c a t e t a s k s among t h r e ad s ( t a s k c o un t / num threads )
14
15
16 for (unsigned int i =0; i<num threads ; i++)
17 {
18 // each th r ead per forms i n d i v i d u a l j o i n phase f o r a l l p a r t i t i o n p a i r s in i t s t a s k
19 do p a r a l l e l : s e r i a l b u c k e t c h a i n ( task ) ;
20 }
21
22 // p r e f i x s um [ 0 ] = 0 ;
23 for (unsigned int j =0; j<num threads + 1 ; j++)
24 {
25 pre f ix sum [ j ] = pre f ix sum [ j −1] + r e s u l t s i z e [ j −1] ;
26 }
27
28 for (unsigned int i =0; i<num threads ; i++)
29 {
30 do p a r a l l e l :
31 memcpy(&R t ids [ pre f ix sum [ i ] ] ,& R r e su l t s [ ] , r e s u l t s i z e [ i ]∗ s izeof (TID) ) ;
32 memcpy(&S t i d s [ pre f ix sum [ i ] ] ,& S r e s u l t s [ ] , r e s u l t s i z e [ i ]∗ s izeof (TID) ) ;
33 }
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In Listing 4.8 on the preceding page, we show an overview of this approach. Thus, in
this approach, we create a set of tasks, i.e., if we have m partition pairs where the tuple
count of both partitions in each pair exceeds zero, then we create m tasks with each task
holding a separate partition pair (lines 6-9 ). We then divide these m tasks among the
available worker threads. In this way, each thread tj performs a serial join phase (build
and probe) for every partition pair contained in the set of tasks assigned to them (lines
16-20 ). Thus, each thread builds a separate hash table for probing each partition pair
Ri and Si. Therefore, we avoid the problem of shared cache memories and TLBs faced
in the previous approach. Further, the load (number of tuples for probe) allocated to
each thread is very high compared to the previous approach. Once all worker threads
complete their individual serial join, we combine their probe results using a prefix sum
technique as before (lines 22-33 ).

4.3.2.3 Branch-Free Code Implementation

Listing 4.9: Join phase – branch-free implementation
1
2 // probe
3 for (unsigned int i =0; i <num S part i t i on ; i++)
4 {
5 bucket number = Hash ( S p a r t i t i o n [ i ] ) ;
6 for ( . . . ) // probe a l l R keys w i th same buc k e t number
7 {
8 // i d − p a r t i t i o n RID r e f e r e n c e d by t h e bu c k e t number
9

10 // we s t o r e t h e RIDs o f matching key s
11 R t ids [ pos ] = R pos par t i t on [ id ] ;
12 S t i d s [ pos ] = S po s p a r t i t i o n [ i ] ;
13 pos +=(R par t i t i on [ id ] == S pa r t i t i o n [ i ] ) ;
14 }
15 }

We know that in each join phase, we perform the build and probe for any partition
pair Ri and Si in a sequential manner. Accordingly, once the hash table is built for
Ri, we start the probing operation between Ri and Si sent to the join phase. Such
probing is done by calculating the hash value for each tuple in Si and then performing
a scan over all keys with the same hash value in the hash table built for Ri. Thus,
in our radix join algorithm, we have a conditional branch instruction at the point
where the join performs this scan for the join predicate (equality). For converting this
conditional branch implementation (lines 21-27 in Listing 4.2 on page 41) into a branch-
free implementation, we adopt the strategy proposed by Broneske et al. for a simple
database scan [BBS14]. Thus, we remove the serial join with conditional branch probing
to a branch-free implementation at the cost of executing a comparatively large number
of instructions as in Listing 4.9 (lines 6-14 ). We already mentioned the advantages of
these branch-less implementations in Chapter 2.

4.4 Combination of Code Optimizations

Our experimental evaluation, which we will discuss in the next chapter, confirm that in
most of the cases, the branch-free implementation for the join phase does not provide
an optimal solution over the join phase of the serial radix join. On the contrary, the
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parallel version offer significant benefits compared to all the other versions. Therefore,
while applying the combination of optimization techniques to the serial radix join in our
work, we consider only the combination of vectorization and paralelliztion techniques.
We explain our approach of applying them to individual phases of the radix join as
below.

4.4.1 Partition Phase – Parallelization + Vectorization

The approach that we use for partitioning the input relations is straightforward, i.e.,
similar to our approach used in parallel partitioning, we set one thread per core for
parallelizing the whole phase. Each thread in turn uses SIMD instructions for per-
forming the computation of partition histograms, followed by the storage of partition
tuples. Further, we use two-dimensional arrays for both partition tuple counts as well
as partition memory allocations.

4.4.2 Join Phase – Parallelization + Vectorization

We mentioned earlier in our parallel join phase (second approach) that we set each
thread to perform the serial join for every partition pair allocated to them in a parallel
fashion. Thus, for our combination of parallelization and vectorization techniques, we
set each thread to perform the vectorized join simultaneously. Once all worker threads
complete their probe activities, we store their individual results using the same prefix
sum technique as in a parallel join phase. For the vectorized join phase, we use our
second approach discussed under Section 4.3.2.1 on page 46.

4.5 Summary

To summarize, in this chapter, we first presented the framework and the data structures
that we used for implementing all our code optimization techniques. Then, we explained
how we modified the serial radix join adopted from Teubner et al. [BTAÖ13] to process
only 32 -bit key values instead of 64 -bit tuples to suit our column-oriented database (Co-
GaDB). Further, we also explained how we stored the individual join results instead of
observing the number of matches obtained from the join. Once we finalized our serial
radix join version, we explained all our approaches of handling the discussed code op-
timization techniques for this version. We also showed several approaches of handling
them and also mentioned the advantages and disadvantages for various approaches. Fi-
nally, we discussed the combination of these optimization techniques that we handled
for the scalar radix join.

In the next chapter, we will discuss how we evaluated our implementation techniques
and also present the results of our evaluation and analysis.



5. Evaluation

In the previous chapter, we presented all our radix join variants and explained our
approaches to implement each of them. In this chapter, we show how we evaluated
each of those variants using a common experimental validation. This chapter is divided
into four sections. In Section 5.1, we present our setup for evaluating our radix join
variants followed by a preliminary evaluation of the serial radix join adopted from
Teubner et al. [BTAÖ13] in Section 5.2. In Section 5.3, we project the results expected
for the performance behavior of each optimized variant relative to the scalar radix join.
The predictions that we present in this section are based on our literature survey.

In Section 5.4, we discuss the actual behavior of all our variants with respect to the
workload and the performance metric that we used for our evaluation. Finally, in
Section 5.5, we give a brief summary of our observation about the performance behavior
of all our optimized radix join variants.

5.1 Evaluation Setup

For comparing the performance behavior of the optimized radix join implementations,
we use workload comprising two different variables (datasets and selectivity ratios) that
are more relevant for in-memory database processing. Further, our workload mimic the
ones that were already used in the literature for analyzing the performance of several
hash join variants. For testing all our radix join variants, we use two different machines
with enough main-memory to hold and process the given workload. On each machine,
we evaluate the performance of our radix join variants by recording their time taken to
process a given input workload in milliseconds (ms). We explain our evaluation setup
in detail as below.

Dataset

The first variable of our workload consists of several datasets as shown in Table 5.1
on the following page. All our datasets consist of in-memory database columns with
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varying cardinalities in the order of MBs (megabytes). As mentioned in the previous
chapter, we consider only tuple keys for our join processing of input relations and these
keys are represented using 32 -bit integer attributes. The relation R (smaller relation)
consists of only unique keys whereas the relation S (bigger relation) consists of a uniform
distribution of keys contained in R.

S.No
Absolute Cardinality

Dataset (set 1)
Relative Cardinality

Dataset (set 2)

1 8MB:128MB
64MB:128MB
128MB:128MB

2 16MB:256MB
64MB:256MB
128MB:256MB
256MB:256MB

3 32MB:512MB
128MB:512MB
256MB:512MB
512MB:512MB

Table 5.1: Workload – datasets

Our datasets can be classified into two broad categories - absolute cardinality dataset
and relative cardinality dataset, according to those used by Blanas et al. and Kim et
al. [KKL+09, BLP11]. In the first category, we use three different datasets whose
relation sizes are fixed and the difference in cardinalities of input relations R and S is
significant with a ratio of 1:16. Accordingly, the datasets belonging to this category
have a cardinality of 8MB:128MB, 16MB:256MB and 32MB:512MB for relations R and
S respectively. We use the formula 1MB = 1,048,576 bytes for filling our in-memory
keys relative to these cardinalities. We refer to this category of datasets as set 1 in the
remainder of this chapter.

In the second category, for each size of the relation S used in set 1 (128MB, 256MB
and 512MB), we increase the size of the relation R in a linear fashion. This dataset
helps us to study the performance of our optimized variants with respect to scalability
when the relative size of the relation R is increased. As we alter the relative size of the
relation R, we also adjust the distribution of the key values in relation S. We refer to
this category of datasets as set 2 in the remainder of this chapter.

Selectivity

The second variable of our workload is the join selectivity factor. We know that the
join selectivity between two input relations R and S is given by card(R ./ S)/card(R
* S), where card(R ./ S) refers to the number of joining tuples and card(R * S) refers
to the number of tuples obtained as a result of cross multiplication between R and S.
However, for our experiments, we use a selectivity factor that is more relevant in the
context of online analytical processing (OLAP) as proposed by Blanas et al. and Kim
et al. [KKL+09, BLP11]. Accordingly, the selectivity factor here refers to the fraction
of tuples in S that matches with those in R. For each dataset in our workload, we test
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our radix join variants for different join selectivities in the range of 0-100%. We vary
each selectivity ratio in steps of 10%.

Thus, we have a perfect referential integrity constraint between R and S only for a full
selectivity (100%), where each tuple in S is guaranteed to find exactly one join partner
in R. For selectivity factors less than 100%, we still maintain a uniform distribution of
the key values in S. For example, for a selectivity of 50%, we fill half of the relation S
with a uniform distribution of first 50% of the key values contained in R, whereas for
the remaining 50% of S, we uniformly distribute them with keys outside the range of
the key values contained in R. Thus, for selectivities less than 100%, we select only the
same fraction from R since we want to maintain a reasonable uniform distribution when
the size of R approaches that of S for our datasets in set 2. We perform the selectivity
test for every dataset shown in Table 5.1 on the preceding page.

Machines

We test our implementations on two different machines, with the first machine being an
Intel Core i5-2500 with a Sandy Bridge architecture and the second machine being an
Intel Xeon E5-2609 v2 with an Ivy Bridge architecture. We refer to these two machines
as machine 1 and machine 2 throughout this chapter. Both machines are installed with
Ubuntu 10.04.3 operating system and on each machine, we use GNU C++ compiler
4.6.4 for compiling our radix join variants. The machine 1 is provided with a single
socket with four cores, whereas the machine 2 is provided with two sockets, with each
socket supporting four cores. Furthermore, each core on both machines is provided
with a single thread and thus, we have four threads on machine 1 and eight threads on
machine 2. Both machines support a three level hierarchical cache memory with shared
L2 and L3 caches. A detailed description about the cache memory capacities of these
two machines can be found in Table 5.2.

Specifications Machine 1 Machine 2
Architecture Sandy Bridge Ivy Bridge

CPU Intel Core i5-2500 Intel Xeon E5-2609 v2
CPU Frequency 3.3 GHz 2.5 GHz

Number of sockets 1 2
Number of cores per socket 4 4
Number of thread per core 1 1

L1-Cache 256 Kb 256 Kb
L2-Cache (Shared) 1 Mb 1 Mb
L3-Cache (Shared) 6 Mb 10 Mb

Cache-Line Size 64 bytes 64 bytes
TLB capacity 64 entries 64 entries

Table 5.2: Specifications for used machines
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Performance Metric

We evaluate the performance of each radix join variant by using the metric - response
time in milliseconds (ms). For more clarity, we measure three different response times
as below:

• Time taken to complete the partition phase (in milliseconds).

• Time taken to complete the join phase (in milliseconds).

• Time taken to complete the overall radix join processing (in milliseconds).

By doing this, for each dataset and for different selectivity factors, we can easily analyze
the individual phase that has the major impact on the behavior of the overall join
processing of each radix join variant.

5.2 Preliminary Evaluation for Serial Radix Join

Before evaluating our optimized radix join variants, we first check whether the original
scalar implementation that we adopted from Teubner et al. performs according to the
previous work of Teubner et al. and Blanas et al. [BTAÖ13, BLP11]. We present our
observation for each phase in the following subsections. For each implementation (serial
and other variants), we repeated our testing for 50 times and discarded the slowest and
the fastest 5 results according to the time taken for the overall radix join processing.
On both machines (1 and 2 ), we set the number of radix bits to 14.

Partition Phase

We present our evaluation results for the serial partitioning corresponding to the dataset
8MB : 128MB in Figure 5.1 on the next page. As can be seen in this figure, the
partitioning behavior varies across both machines. We explain them one by one below.

Machine 1 - On machine 1, the partition phase nearly exhibits a constant performance
across the entire range of selectivity factors 0-100% with a very little variation. This is
because, regardless of the selectivity factor, the radix partitioning is performed for the
entire amount of input keys contained in input relations R and S. Thus, the variations
observed in the partitioning behavior occur due to the nature of the data distribution
accompanied by random memory accesses [KKL+09, BLP11]. It should be noted that,
in addition to the tuple keys, we also store their respective Row-IDs (RIDs) in separate
set of partitions. Therefore, we expect these variations to become worse especially for
extremely high cardinalities of input relations.

Machine 2 - On machine 2, we observe a different kind of partitioning behavior espe-
cially at the selectivity factors - 0%, 50% and 100%, i.e., the variations in the partition-
ing behavior corresponding to these selectivities gradually became worse, whereas for
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Figure 5.1: Partition phase – serial radix join (for dataset - 8MB : 128MB)

other selectivity factors, it exhibits a little variation. We notice the same result for all
our datasets in both set 1 and set 2. This is because the random memory access pattern
normally shows different trends across different architectures according to the amount
of TLB and cache misses encountered during partitioning [BLP11, Man02, KKL+09].
Accordingly, we found that the cache miss quantities for these selectivity factors (0%,
50% and 100%) are higher compared to other join selectivities. For instance, for the
dataset 8MB : 128MB, the number of L3 cache misses for these selectivity ratios are
in the order 1.8 * 107 - 2.2 * 107, whereas for other selctivity factors, it is always in
the order 1.6 * 107. However, for machine 1 with a smaller sized L3 cache memory,
the quantity of cache misses are stable across all selectivity ratios and are always in the
order 2.2 * 107. Also, it can be noted that the machine 2 generally consumes more
time to complete the partitioning than the machine 1 due to machine 2 ’s lower CPU
clock frequency compared to machine 1.

Reasons for Cache Miss Variations across Machine 1 and Machine 2

We explain the reason for such varying and stabilized cache misses for machines 1 and
2 respectively as below.

Our analysis reveal that, for machine 2, at the selectivity factors - 0%, 50% and 100%,
increased cache misses occur due to the nature of the data distribution corresponding
to these selectivity factors for the relation S. This means depending on the data dis-
tribution, certain partitions are updated with very less frequencies. For example, for a
selectivity of 100%, if a partition Pt is updated for a key value at a certain time period,
the frequency for its successive updates is very low such that it goes out of the L3
cache memory since we need to pull other tuple keys (along with their RIDs) and their
corresponding partitions into this cache memory for performing their own partition up-
dates. Therefore, the number of L3 cache misses for partitions of type Pt are very high
compared to other partitions that are updated with comparatively high frequencies.
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However, for selectivities less than 100% such as 90% where we replace the last 10%
of S with keys that are not in R, we do not encounter the same kind of problem and
hence the total cache miss quantities are reduced. We observe the same behavior for
the selectivity factor of 0%, where we entirely fill S with uniform keys that are not in
R. Thus, we can conclude that we encounter such problems because of the nature of
our data distribution corresponding to the last 10% of S. Also, we notice that all the
partition sizes for these two selectivity factors matches exactly with one another which
further confirms our analysis. Similarly, for the selectivity factor of 50%, we encounter
a similar kind of problem due to the data distribution nature between the uniformly
distributed keys of R contained in 40-50% of S and the other set of keys (out of range
of R) contained in 50-60% of S.

However, we do not encounter these type of varying cache misses at different selectivity
factors for machine 1. This is because, the size of their L3 cache memory is compar-
atively smaller than that of machine 2 and therefore, in addition to the high cache
miss quantities corresponding to low frequency partitions of type Pt and cache misses
corresponding to the actual relation keys, their cache misses are comparatively higher
even for other partitions that are updated more frequently. Thus, the total number of
L3 cache misses are higher and more stabilized on machine 1 than on machine 2.

We notice that the partitioning behavior on machine 2 concur with the argument of
Blanas et al. for a hash join, i.e., on some multi-core architectures, when only a few
number of cores (one core for a serial implementation) is set to perform the whole hash
join processing, keeping the remaining available cores idle, the algorithm behaves in a
different manner than the expected performance [BLP11]. Accordingly, on this machine,
we observe that when we use all available cores for our parallelization techniques, the
variations in the partitioning behavior at different selectivity factors are comparatively
reduced and especially for very high cardinalities of R and S, they nearly achieve a
constant performance similar to machine 1. Moreover, for very high table sizes of R
and S, both machines nearly consumed the same time for the serial partitioning, i.e.,
the performance of a serial radix partitioning on machine 2 approaches the performance
on machine 1 for increasing cardinalities of R and S. We will discuss this in detail in
Section 5.4.1 and Section 5.4.2.

Join Phase

We present our evaluation results for the overall join phase on machines 1 and 2 corre-
sponding to the dataset 8MB : 128MB in Figure 5.2 on the facing page. As seen in this
figure, both machines exhibit nearly the same behavior pattern across the entire range
of join selectivity. Similar to the partitioning phase, we observe that the machine 2
generally consumes more time to complete the join phase compared to the machine 1.
We explain the performance in build and probe phases separately as below.

Build - Similar to the partitioning phase, the time required to complete the building
of hash tables for all Ri partitions during the join phase is generally independent of
the selectivity factor. This is because, during each individual build, we store only the
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array position indices of the input keys of Ri to their respective buckets and the cost for
this process generally depends upon the number of tuples in such partitions [BTAÖ13].
Since we have uniformly distributed primary keys in R, the size of every Ri partition is
equal and thus, the time consumed for all individual build phases remains nearly the
same. Generally, the time for every build is very less when compared to the individual
probing of partition pairs [BTAÖ13, BLP11] .

Probe - The probe is the only phase that is significantly affected by the join selectivity
factor. In general, for in-memory hash join operations, the time required to complete
the probing across all partition pairs increases with increasing selectivity factors. This
is because, as the join selectivity increases, the number of instructions to be executed
also increases [BLP11]. Moreover, it should be noted that the probing between any
partition pair Ri and Si can be viewed as a simple scan of each key in Si over all keys
stored in Ri buckets with the same hash value. However, for each key in Si, at most only
one match is guaranteed from Ri (due to the storage of primary keys inRi). Hence, the
prediction expected from a branching instruction in the probe phase in most of the cases
will always be a non-match. For lower selectivity factors, such predictions perform well
since we have very few matches (join partners) whereas for higher selectivity factors, it
does not give reasonable solutions. Therefore, as we increase the selectivity factor, the
prediction accuracy generally degrades which in turn increases the response times. On
many multi-core architectures, a strong linear correlation exists in the behavior of the
overall performance of the join phase [KKL+09, BLP11].
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Figure 5.2: Join phase – serial radix join (for dataset - 8MB : 128MB)

As we discussed in Chapter 3 and Chapter 4, as the partition count increases, their
respective sizes are refined such that the resulting partitions fit well in the cache memory.
In spite of storing both keys and their corresponding RIDs in our implementations, even
for our largest cardinality set (512MB : 512MB), all partitions (16384) produced with
14 radix bits fit very well in cache memories (data caches) of the used machines. Thus,
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we expect our results of the serial join phase to nearly correlate with the results in the
literature for all our datasets mentioned in Table 5.1 on page 54.

Overall Performance

As we observe from Figure 5.1 on page 57 and Figure 5.2 on the previous page, it is
clear that the partitioning phase plays a dominant role in the overall time required
to complete the radix join processing. From the evaluation of our scalar radix join
implementation, we observe that this phase comprises approximately 75-90% of the
total time across various selectivity factors. Therefore, we can conclude that the overall
performance of the radix join processing strongly depends upon the time spent on
the partitioning of input relations. We show our results of the overall response time
consumed by both machines for the dataset 8MB : 128MB in Figure 5.3.
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Figure 5.3: Overall performance – serial radix join (for dataset - 8MB : 128MB)

In this section, we evaluated the scalar implementation of the radix join. Since our
evaluation results for the scalar radix join concur with those results presented in litera-
tures [KKL+09, BLP11], we now have a good starting point for further evaluating our
optimized radix join variants and comparing their performance behavior with that of
the scalar radix join in both the used machines.

5.3 Projected Results for Optimized Variants

Before presenting the actual evaluation results for our optimized radix join variants, we
first present our expectation about their performance behavior in relation to the serial
radix join in the following subsections. We also strengthen our expectations with facts
from various literatures.



5.4. Evaluation of Optimized Variants 61

Vectorization

Kim et al. argue that the use of scatter and gather operations in the join phase limits
the exploitation of SIMD architectures for any general hash join technique [KKL+09].
We already discussed in the previous chapter that we avoided such operations for our
vectorized variants. Instead, we combined loop unrolling of depth 4 (for 32 -bit integers)
along with SIMD instructions in both the partition phase and the join phase. However,
we still expect these variants not to completely outperform the serial version in all
situations due to a large number of conflicting instruction overheads that occur with
such combinations.

Parallelization

As discussed in the previous chapter, for our parallel radix join implementation, we
followed the approach of using at most only one thread per core. Thus, we avoided
the use of simultaneous multi-threading (SMT) and therefore, we do no encounter the
problems that arise from sharing of hardware resources among threads belonging to
the same core. Further, for any hash join technique, a significant amount of scalability
benefits are realized using such implementations [KKL+09, BATz13]. Therefore, we
expect our parallel implementation to perform extremely well when compared to the
scalar version for all our used datasets.

Branch-Free Code Technique

There is not enough evidence in the literature about the behavior of radix join techniques
when optimized with branch-free implementations. As we mentioned in the previous
section, once we have all partition pairs for input relations R and S, the probing between
each partition pair Ri and Si can be viewed as a simple scan of each key in Si over
all keys with the same hash value in the hash table built for Ri. It can be seen that
even for a 100% join selectivity, every key in Si is guaranteed to find only one match
in Ri since the Ri is filled only with primary keys. Therefore, we can conclude that
the scan selectivity of each key in Si will always be 0/n or 1/n, where ’n’ is the total
number of Ri keys with the same hash value that are chained together. Thus, the
scan selectivity of each key in Si will always be around 0%. Broneske et al. confirmed
that for a simple scan operation, the branch-free implementation performs worse than
the serial scan when the branch probability is very low [BBS14]. Thus, we expect
that for any join selectivity factor, the branch-free implementation does not give an
optimal performance for the join phase. Since we use the same serial partitioning for
the branch-free technique, we expect the scalar radix join to completely outperform the
branch-free radix join in all situations due to the worse performance that would arise
from a branch-free probing.

5.4 Evaluation of Optimized Variants

Now we discuss the actual performance behavior of all our optimized radix join variants
in comparison to the serial radix join. For the sake of simplicity, in the remainder of



62 5. Evaluation

this chapter, we use the keyword serial variant to refer to the scalar radix join. For
radix join implementations optimized with vectorization, parallelization and branch-
free techniques, we denote them using keywords vectorized variant, parallel variant
and branch-free variant respectively. Further, we use the keyword P+V variant to
refer to the implementation optimized with a combination of both vectorization and
parallelization techniques.

This section is further divided into three subsections. In Section 5.4.1 and Section 5.4.2,
we discuss the performance of each optimized variant with respect to partition and join
phases. Based on our discussions in these two sections, we summarize the overall
performance of each optimized variant in relation to the serial variant in Section 5.4.3.

5.4.1 Partition Phase

In this section, we present our evaluation results for the partition phase of each radix
join variant on both machine 1 and machine 2. For each machine, we discuss the
performance of each optimized variant with respect to all datasets used for our workload
(set 1 and set 2 ). Since we use the standard serial partitioning for the branch-free
variant, we discuss only the partitioning behavior for vectorized, parallel and P+V
variants in relation to the serial variant.
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Figure 5.4: Partition phase – machine 1 (for datasets in set 1)

Set 1 - In Figure 5.4, we present our evaluation results for the partitioning behavior of
all radix join variants on machine 1. These results correspond to our evaluation for the
absolute cardinality dataset (set 1 ). From this figure, it is clear that both parallel and
P+V variants perform significantly better than the serial variant, whereas the vectorized
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Figure 5.5: Partition phase – machine 1 (for datasets in set 2)

variant offers no improvement over the serial partitioning. Among parallel and P+V
variants, we found that the parallel partitioning offers a slight advantage over the P+V
partitioning over the entire range of selectivity factors. We observe the same behavior
for all our datasets in set 1.

Set 2 - In Figure 5.5, we present our results for the partitioning behavior on machine 1
for the relative cardinality dataset (set 2 ), where we increase only the size of the relation
R for each size of S used in set 1. We present our results only for datasets - 256MB :
512MB and 512MB : 512MB, since we observe almost the same result as the size of R
approaches towards its respective size of S. The results indicate that there is no change
in the partitioning behavior, i.e., the optimized variants exhibit a behavior similar to
their performance for set 1, with the parallel partitioning once again providing the best
performance over the serial partitioning.

Machine 2

Set 1 - On this machine, the results are nearly similar to machine 1 for all datasets
belonging to set 1 with the only notable difference coming in the performance behav-
ior between parallel and P+V variants. Here, only for our largest dataset 32MB :
512MB, we observe that the P+V variant slightly outperforms the parallel variant at
some points (corresponding to the selectivity factors 50% and 60% ). We present our
evaluation results for datasets - 8MB : 128MB and 32MB : 512MB in Figure 5.6 on
the following page. It can be noticed that the variations observed in a serial partition-
ing are comparatively reduced when we use all available cores for our parallelization
techniques.

Set 2 - Figure 5.7 on page 65 shows our evaluation results for datasets in set 2 on
machine 2. From this figure, we observe that the parallel variant which is sometimes
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Figure 5.6: Partition phase – machine 2 (for datasets in set 1)

outperformed by the P+V variant (for the dataset 32MB : 512MB) improves as we
increase the relative size of R. Thus, similar to their performance on machine 1, the
parallel variant offers a comparatively better partitioning performance than the P+V
variant. Moreover, the variations observed in the serial partitioning are even more
reduced when parallelized and both parallel and P+V variants exhibit nearly a constant
partitioning behavior across the entire range of selectivity factors. Also, we notice
that for our datasets 256MB : 512MB and 512MB : 512MB, the serial variant on this
machine consumed nearly the same time as on machine 1. Similarly, the parallel variant
and consequently the P+V variant on this machine (with 8 cores) consumed less time
than on machine 1 (with 4 cores). Thus, we can conclude that the performance of
serial and parallel radix join variants on machine 2 matches with their performance on
machine 1 at increasing cardinality rate of relations R and S. In addition, we observe
that compared to the serial variant, the performance of the vectorized variant on this
machine gets worse than on machine 1 for increasing sizes of R.

To summarize the partitioning behavior of each radix join variant, we conclude that the
parallel variant offers the best overall performance over the serial partitioning, whereas
the vectorized variant offers the worst behavior among all the implemented radix join
variants. We already mentioned in Section 5.2, that the partition phase has the major
impact on the overall response time of a serial radix join implementation. From our
observation, we found that this is applicable even for their respective optimized variants
although the amount of time that a partition phase comprises for a serial radix join
(75-90%) is not exactly the same for their respective optimized variants (especially
parallel variant and P+V variant). Therefore, we expect those variants that perform
well in the partition phase tend to become the best overall radix join variant.
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Figure 5.7: Partition phase – machine 2 (for datasets in set 2)

5.4.2 Join Phase

In this section, we discuss the performance behavior of each radix join variant in the
join phase (build and probe). Since the probe is the only phase that is significantly
affected by the join selectivity, for the sake of more clarity, we explain the behavior of
each optimized radix join variant in relation to the serial variant separately respective
to each machine in the following subsections. At the end of this section, we will discuss
how the join phase performance of each optimized variant on both machines nearly
correlate with each other for increasing sizes of R and S.
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Figure 5.8: Join phase – machine 1 (for datasets in set 1)
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Figure 5.9: Join phase – machine 1 (for datasets in set 2)

In Figure 5.8 and Figure 5.9, we present the results for all radix join variants in the
join phase. We summarize the performance of each optimized variant as below.

Parallel and P+V Variants - Similar to the partition phase, the join phase of both
parallel and P+V variants outperform the serial variant for all our datasets in set 1.
Further, it can be seen from Figure 5.8 that, as we increase the cardinalities of both
relations R and S in set 1, the difference in response times between the serial variant and
that of parallel and P+V variants also increases. Thus, from Figure 5.9, we can observe
that when we increase the relative size of R in set 2, both parallel and P+V variants
become extremely efficient among all the other optimized variants. Among parallel and
P+V variants, we observe that for both set 1 and set 2, the parallel variant provides
the best performance except at higher selectivity factors such as 90% and 100% since
the P+V variant offers a slight advantage at these selectivities.

Vectorized Variant - From Figure 5.8, we can see that for all our datasets in set 1, the
vectorized variant offers advantage over the serial variant at selectivity factors higher
than 60%. Further, it also provides a slight advantage over both parallel and P+V
variants at higher selectivities factors such as 90% and 100%. But, as we increase the
relative size of R in set 2, it cannot compete with the extremely efficient performance
of parallel and P+V join variants at any selectivity factor for datasets belonging to
this set. However, its advantage over the serial variant continues to improve and for
datasets in set 2, it outperforms the serial variant even at lower selectivity factors.
For example, from Figure 5.9, we can see that for the dataset 128MB : 512MB, the
vectorized variant provides a better join phase performance at every join selectivity
higher than 40%, whereas for datasets 256MB : 512MB and 512MB : 512MB, the
vectorized variant overtakes the serial variant at all selectivity factors.

Branch-Free Variant - From Figure 5.8 and Figure 5.9, we can observe that the
branch-free variant produces the worst join phase behavior among all the other radix
join variants. Especially, at 100% join selectivity, its performance degrades drastically
(extremely high jump from 90% to 100% ). This is because, at this selectivity, every
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key in S has exactly one matching key for join in R. Thus, the branch prediction at
this selectivity is always easier and therefore, its corresponding branch-free instructions
suffer a major performance depreciation.

Machine 2

Like machine 1, we discuss the join phase behavior respective to each radix join variant
on machine 2 as below. In Figure 5.10 and Figure 5.11, we present our join phase
evaluation results for both set 1 and set 2 on this machine.
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Figure 5.10: Join phase – machine 2 (for datasets in set 1)
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Figure 5.11: Join phase – machine 2 (for datasets in set 2)

Parallel and P+V Variants - From Figure 5.10, we can see that for datasets in set
1, initially (for dataset 8MB : 128MB) both parallel and P+V variants perform poorly
against the serial variant. But, as we increase the cardinality of both relations R and
S, their performance gradually increases and for our largest dataset in set 1 (32MB :
512MB), they completely outperform the serial variant. Thus, we expect both these
variants to provide a similar performance like their behavior on machine 1 when we
increase the relative sizes of R in set 2. Accordingly, from Figure 5.11, we can observe
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that both parallel and P+V variants become extremely efficient for all datasets in set 2.
Among parallel and P+V variants, unlike the results observed for machine 1, the P+V
variant provides advantage over the parallel variant at 50% selectivity for all datasets
in set 1. However, for set 2, the performance of the P+V variant gradually decreases
over the parallel variant as we increase the size of R and similar to machine 1, the P+V
variant offers advantage over the parallel variant only at higher selectivity factors (90%
and 100% ).

Vectorized Variant - Unlike machine 1, for all datasets in set 1, the vectorized variant
does not offer any benefits over the serial variant. However, we can see from Figure 5.10
that its performance came closer to the serial variant at higher selectivity factors. Ac-
cordingly, as we increase the size of R in set 2, the vectorized variant starts improving
and for our largest dataset (512MB : 512MB), it provides benefits over the serial vari-
ant at selectivity factors higher than 20%, which nearly mimics their results observed
for machine 1.

Branch-Free Variant - From Figure 5.10 and Figure 5.11, we can see that similar to
their behavior on machine 1, the branch-free variant does provide any benefits over the
other radix join variants. However, the degradation that occur at 100% join selectivity
is very less compared to their corresponding degradation on machine 1.

From above discussions, it is clear that the join phase performance of parallel, P+V
and vectorized variants on machine 2 closely matches with that of their performance on
machine 1 for increasing sizes of R and S. Thus, we expect the join phase performance on
both machines to nearly correlate with each other for input relations with cardinalities
higher than the ones used in our workload.

5.4.3 Overall Performance

Despite the varying behaviour in the join phase, from our evaluation, we observe that
the overall performance of each radix join variant is influenced by their partitioning
behaviour. Therefore, as we expected earlier, the optimized variant that offers the best
partitioning performance over the serial variant achieves the best overall performance
for our datasets in both set 1 and set 2. In Figure 5.12 on the facing page, we present our
evaluation results corresponding to the overall performance of each radix join variant
for our largest dataset - 512MB : 512MB. We summarize our observation as below:

• Due to their dominating partitioning behavior on both machines, parallel and
P+V variants provide the best overall performance among all the other radix
join variants for all our used datasets. Further, the variations observed in a
serial radix join over the entire range of selectivity factors due to nature of the
data distribution in the partition phase are reduced via both these parallelization
techniques.

• Among parallel and P+V variants, we observe that the parallel variant offers
the best overall performance over the P+V variant despite the parallel variant’s
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Figure 5.12: Overall performance of all radix join variants

performance depreciation against the P+V variant in the join phase at higher
selectivity factors (90% and 100% ). This is because of the comparatively higher
partitioning advantage that the parallel variant offers over the P+V variant at
such selectivity factors.

• On both machines, we find that both vectorized and branch-free variants do not
offer major advantages over the serial variant. This is because of the major
partitioning performance degradation that the vectorized variant suffers against
the serial variant. Similary, the branch-free variant’s worse join phase behaviour
reduces its overall performance significantly in contrast to the serial variant.

• Among vectorized and branch-free variants, we observe variations in their per-
formance across the two used machines, i.e., on machine 1, for datasets in set
1, the vectorized variant with the worst partitioning behavior offers the worst
overall performance except at 100% selectivity, since the branch-free variant gets
worse due its worse degradation in the join phase at this selectivity. However,
as we increase the relative sizes of R, the vectorized variant gradually realize im-
provements over the branch-free variant at different selectivity factors and for our
largest dataset (512MB : 512MB), it completely overtakes the branch-free vari-
ant. This is because of the advantage that the vectorized join phase offers over
serial and branch-free join phases for increasing sizes of R and S on machine 1.

• However, on machine 2, the vectorized variant continues to degrade with increas-
ing sizes of R and S and for our largest dataset (512MB : 512MB), it offers the
worst overall performance. This is because the performance of the vectorized join
phase on machine 2 in contrast to serial and branch-free join phases for increas-
ing sizes of R is significantly less compared to its join phase performance benefits
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realized on machine 1. Further, as explained in Section 5.4.1, the vectorized par-
titioning worsens for increasing cardinalities of R and S on machine 2 and hence,
the overall radix join performance of the vectorized variant degrades drastically
in contrast to all the other radix join variants.

From our discussions above, it is clear that compared to the impact of different car-
dinality sets, the join selectivity factor plays only a minor role in deciding the overall
performance of each radix join variant. Teubner et al. argue that the input relation
sizes (both absolute and relative) has a major impact on the overall radix join per-
formance [BATz13]. We observe that this argument fits well even for their respective
optimized variants. Especially, during the join phase, we observe that the performance
of each radix join variant is influenced by varying cardinality sizes and on both machines,
the performance of each radix join variant nearly mimics each other for increasing sizes
of R and S.

5.5 Summary of our Evaluation

Based on our evaluation results for each optimized radix join variant, we summarize
the performance of our adopted optimization techniques as below.

Vectorization

As mentioned in Section 5.3, the use of a large number of conflicting instructions (SIMD
instructions and loop unrolling of depth 4 ) over two passes of a radix partitioning add
significant overhead to the partition phase. Hence, the vectorized partitioning proves
to be non-advantageous for radix partitioning. However, in the join phase, less number
of such conflicting instructions provides advantage on machine 1 for all datasets used
in our workload. Still, on machine 2, we expect such a constant improvement only
for relations with extremely high cardinalities of R and S. Hence, we conclude that
using vectorization for achieving optimization is not a suitable solution for the radix
join technique. Therefore, as Kim et al. proposed, unless SIMD architectures provide
support for scatter and gather operations, such architectures cannot be exploited fully
by the radix join technique [KKL+09]. Thus, the radix join cannot benefit significantly
from vectorization.

Parallelization

Our evaluation results strictly confirm that in all cases, the scalar radix join benefits
greatly when exploited with all available CPU cores. It should be remembered that for
the parallel implementation of the radix join, we set only one thread per core. Thus,
we avoid simultaneous multi-threading (SMT) and consequently the sharing of cache
memories among threads belonging to the same core. Further, we do not encounter the
problems of load imbalance among worker threads during the parallel partitioning since
we evenly allocate the input relations among all threads to perform their individual



5.5. Summary of our Evaluation 71

partitioning. Even in the join phase, the problems of load imbalance are negligible due
to the nature of uniformly distributed keys, i.e., the size of all partition pairs contained
in the task set allocated to each worker thread are nearly equal because of the uniform
distribution of keys.

Our parallelization advantages over the serial radix join for uniformly distributed keys
also confirm the results of Kim et al. and Teubner et al. [KKL+09, BATz13] for a general
hash join technique. Further, the variations observed due to the use of a single CPU
core in a serial partitioning over the entire range of selectivity factors are reduced when
executed with all available CPU cores for parallelization. Especially, for increasing
sizes of R and S, we observe nearly a constant performance in parallel partitioning.
Therefore, we propose parallelization as the best optimization method for the radix
join technique.

Branch-Free Code Technique

As we projected earlier, our evaluation results clearly prove that in all cases, the branch-
free code technique was not a suitable optimization method for the radix join technique.
We already mentioned the reasons for such degrading performance in Section 5.3. Es-
pecially at a join selectivity of 100% where the branch prediction is always easier,
the branch-free implementation produces the worst behavior even over other poorly
performing variants such as vectorization.

Parallelization Trends for Radix Join
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Figure 5.13: Parallelization trends for radix join (for datasets in set 1)

Since we found parallelization as the most favorable optimization technique for the
radix join, we now see how it improves the scalability of the algorithm, i.e., we check
how the performance improves as we increase the number of CPU cores. For this, we
fix the selectivity factor at 100% and test the parallel implementation for datasets in
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Figure 5.14: Parallelization trends for radix join (for datasets in set 2)

both set 1 and set 2. In Figure 5.13 on the previous page and Figure 5.14, we present
our evaluation results for machine 1. As earlier, we set one thread per core such that
we increase the number of threads in the range 1-4.

From Figure 5.13 and Figure 5.14, it is clear that when we set more than one core to
perform the radix join technique, we observe a significant improvement for paralleliza-
tion. Further, between cores 2-4, we nearly achieve a linear reduction in response times,
i.e., for any core n>1, its response time is directly proportional to the response time
consumed by the core n+1 with a scalability factor of around 1.15. We observe similar
kind of scalability advantages for all our datasets in both set 1 and 2.

Therefore, we conclude that parallelization will favor the radix join technique as long as
the number of CPU cores is increased in future CPU architectures. Still, this technique
need to be re-visited again to check its performance validity when exploited with si-
multaneous multi-threading. Further, in addition to providing benefits over other radix
join variants, the parallel radix join would continue to remain the superior join over
several other join techniques such as no partitioning hash join, partitioned hash join
and sort-merge join. We will discuss this in detail in the next chapter.
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Code optimization techniques, in the field of database management systems, is an im-
portant concept that is visited often in order to understand the performance of various
database operations in systems equipped with modern architectural capabilities. As
part of our thesis, we studied the behavior of a database join operation implemented
with certain code optimization techniques. Similarly, in the past, several researches
have been carried out for studying the performance benefits of other database opera-
tions using various code optimization techniques. The content that we present in this
chapter are based on surveys carried out to adopt ideas for using in our work. In gen-
eral, the information that we present in this chapter belong to one of the following two
categories:

1. Code optimizations in the context of various database operations

2. Code optimizations (vectorization and parallelization) in the context of join tech-
niques

6.1 Code Optimizations for Database Operations

Broneske et al. studied the performance behavior of a database scan operation with
respect to four different code optimization techniques – loop unrolling, branch-free code
technique, vectorization and parallelization [BBS14]. In addition, they also implemented
the combination of each of these optimization techniques for the scan operator. Based
on their findings, they concluded that the performance of most of these optimized scan
variants vary across different selectivity factors and different machines, i.e., there is no
single scan variant that tends to become the best optimized variant in all situations.
Hence, they proposed the method of cost model learning to select the best variant at
run-time, i.e., use of a query engine which retains only the best optimal scan variant
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for future by learning the cost model of each variant depending upon the machine and
the current workload.

Raducanu et al. proposed a framework called microadaptivity to overcome the problems
associated with developing cost models for optimized variants [RBZ13]. This framework
dynamically selects the best optimized variant for a particular database operator at run-
time based on the historical performance of each variant under various environmental
features such as used machines, workload and data distributions. To expose its validity,
they tested the framework for different database operators such as scan, projection, join
and aggregation optimized with loop unrolling, loop fission, branch-free code technique
and vectorization. For every database operation, their respective optimized variants are
implemented using vectorized processing, i.e., execution of all operator variants while
processing a single attribute. However, their framework does not reveal the performance
of the optimization techniques when combined with each other.

Vectorization and Parallelization Techniques for Database Op-
erations

In order to gain benefits from modern CPUs that provide high degree of parallelism
(both data-level parallelism and thread-level parallelism), several attempts have been
made to find their advantages for database algorithms. Zhou et al. studied the perfor-
mance of various database operations such as scan, aggregation, indexing and nested
loop join when accelerated with modern SIMD architectures [ZR02]. More specifically,
they attempted to apply SIMD techniques by carefully tuning them to the inner loop
code present in the algorithms relative to these database operations. Similarly, Poly-
chroniou et al. tested the aggregation operations with careful tuning of SIMD techniques
to boost their performance [PR13]. Both these authors argue that explicit tuning of
their adopted database operations to the underlying SIMD architectures result in pro-
viding performance benefits over the existing scalar operations. However, they do not
study the advantages of SIMD techniques with respect to other code optimization tech-
niques.

Chhugani et al. improved the scalability of a database merge sort by combining vec-
torization and parallelization techniques via SIMD instructions and multi-threading
respectively [CNL+08]. They realized that such combination of optimizations along
with multi-way merging and cache blocking techniques improve the performance of a
merge sort operation on a 4 -core processor with a SIMD width of up to 64 bits. Fur-
ther, they also predict that their results are applicable on any multi-core processors
with more than 32 cores.

6.2 Vectorization and Parallelization Techniques for

Joins

Over the years, sort-merge join and hash join have been visited several times to find
the better of these two techniques when exploited with multi-core architectures with
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modern CPU capabilities. To analyze such a performance behavior between these two
join implementations, Kim et al. implemented both parallelized and vectorized versions
of the partitioned hash join and the sort-merge join [KKL+09]. Similarly, Teubner
et al. implemented the parallel radix join and compared them with the sort-merge
join optimized with a combination of both vectorization (via SIMD instructions) and
parallelization techniques. [BATz13]. Further, they also compared the performance of
the parallel radix join with the no partitioning hash join [BTAÖ13].

The experimental analysis of the optimized hash join variants over the scalar hash
join with respect to different machines match with our findings for the radix join,
i.e., Kim et al. concluded that SIMD techniques do not favor the hash join due to
the limitations of scatter and gather operations, whereas the parallelization offer good
scalability advantages particularly when the workload contains uniformly distributed
data [KKL+09]. However, they compared both these versions only to the scalar hash
join and the sort-merge join. Further, comparison of these hash join versions with
branch-free technique or their combinations are not part of their scope since their main
goal was to study the exploitation of different types of join algorithms with modern
CPU architectures.

Similarly, Teubner et al. argue that the parallel radix join performs significantly better
than the no partitioning hash join [BTAÖ13]. Further, it also offers better perfor-
mance over the sort-merge join improved with both vectorization and parallelization
techniques [BATz13]. Blanas et al. revealed the performance benefits of the parallel
radix join while comparing them with the no partitioning hash join and the partitioned
hash join [BLP11]. Again, we noticed that parallelization techniques for the radix join
offer significant benefits over its scalar implementation. In addition, the parallel radix
join was also found to be the best hash join technique among all the other hash joins.
Further, our study implies that more than selectivity factors, workload with varying
cardinalities (both relative and absolute) reveal more insights into the behavior of the
optimized variants for both hash join and sort-merge join.
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7. Conclusion

In this thesis, we implemented the code optimization techniques to a scalar radix join for
studying their performance impacts with respect to modern capabilities of the under-
lying CPU architectures. Based on our discussion in previous chapters, we summarize
the previous published findings in the literature related to our work and compare the
concurrence of our evaluation results with them as below:

• Most of the previous published results confirm that the hash join and conse-
quently the radix join, unlike the sort-merge join, cannot benefit significantly
from vectorization via increasing SIMD capabilities. This is because the current
SIMD architectures do not support the storage of data to non-contiguous memory
locations (scatter operation) required for radix partitioning. Further, while per-
forming the probe between partition pairs, they suffer from major performance
depreciation due to the loading of data from non-contiguous memory addresses
(gather operation). Due to these limitations, the radix join cannot fully exploit
the SIMD architectures and hence need to be reverted back to its original scalar
version. In our vectorized implementation, we replaced the scatter and gather op-
erations by loop unrolling technique and hence, we explicitly tuned the algorithm
such that it is not affected by such SIMD limitations. However, we still observed
that the improvement in the resulting implementation is not enough to provide
benefits over the original implementation of the scalar radix join. Therefore, we
argue that unless SIMD architectures in modern processors come up with efficient
hardware support for scatter and gather operations, the radix join cannot realize
improvements from vectorization techniques via SIMD instructions.

• Current implementations of the radix join are expected to benefit significantly
from any multi-core CPU architecture as long as the number of CPU cores is
increased. Further, omitting simultaneous multi-threading (SMT) does not cause
any performance depreciation for increasing sizes of the workload. Our evaluation
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results presented in Chapter 5 concurred with the previous published results,
i.e., we observed a significant reduction in response times as we increased the
number of cores where we set one thread per core for parallelization. Further,
our parallel radix join implemented with all available CPU cores provided the
best overall performance even among the other optimized radix join variants.
Therefore, we argue that the radix join technique would continue to benefit greatly
from parallelization techniques via multi-threading.

• Our implementation of the parallel radix join which is optimized further with vec-
torization techniques provided almost the same benefits as its parallel counterpart
over the scalar radix join. However, it does not provide advantage over the actual
parallel version due to the limitations of SIMD instructions that we mentioned
earlier.

• In literature, there is little work considering the branch-free code technique for op-
timizing the radix join. However, we projected that, in the context of in-memory
join operations, the branch-free code technique would not prove to be advanta-
geous for the radix join. This is because, replacing a branch with non-branching
instructions require execution of comparatively more number of instructions. Such
instructions tend to provide benefits only when the outcome of a branching state-
ment is hard to predict. But, in case of a radix join probing, such outcomes are
easier to predict depending upon varying selectivity factors. We saw in Chapter 5
that our evaluation results matched with our prediction. Thus, we argue that the
branch-free code technique does not help a main-memory radix join technique in
any situation.

Finally, to conclude our whole work, we argue that the parallel radix join has been
found to provide the best optimal performance over its scalar version and hence, we
propose the parallelization technique as the best optimization technique for the scalar
radix join. Further, as mentioned in the previous chapter, the parallel radix join would
also remain the best in-memory hash join technique among both hardware-conscious
and hardware-oblivious hash join techniques.



8. Future Work

In this thesis, we discussed the performance behavior of several code optimization tech-
niques for the radix join. Even though we demonstrated the impacts of each opti-
mization technique, we identify certain points that need to be addressed in the future
to further confirm our analysis. Thus, in this chapter, we present some of the open
problems that could be undertaken to extend our evaluation results.

Performance with Skewed Data Distribution

Our evaluation results for the performance of each radix join variant are based on input
relations consisting of uniformly distributed data. Thus, one possible direction to extend
our work would be to analyze the behavior of each variant with respect to skewed data
distribution. Even though we expect the vectorized and branch-free variants to nearly
produce the same performance for such data distributions, we expect the parallel variant
to suffer performance depreciation due to load imbalance that might occur in the join
phase. Especially, when skewed distributions such as Zipf data distributions are used,
the probability of each tuple falling into the same partition are likely to increase in the
worst case and hence, the scalability advantages offered by the parallelization technique
are likely to get compromised significantly because of a major load imbalance during
probing. Therefore, it is necessary to check whether such degradation affects their
performance against other radix join variants, especially the variant that is implemented
with both vectorization and parallelization techniques.

Performance with Re-Ordered Histogram-Based Hash

Table Implementation

In Chapter 3, we mentioned two approaches for executing the join phase of a radix join -
classical bucket-chaining algorithm and re-ordered histogram-based hash table algorithm.
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However, for our work, we used only the bucket-chaining algorithm. Therefore, another
possible way to extend our work would be to analyze the performance of the vectorized
variant over the serial variant implemented with the re-ordered histogram-based hash
table algorithm. This is because with this algorithm, during the build phase, the input
keys in the inner partition (Ri) are re-ordered such that keys possessing the same hash
value are stored in contiguous memory locations. Therefore, we expect the probe phase
to benefit significantly via vectorization techniques since the gather operations which
previously limited the exploitation of SIMD architectures due to the nature of bucket-
chaining algorithm can now be performed efficiently. Even though such advantages that
are likely to realize in the overall join phase are independent of the partitioning phase,
we can still expect a reasonable performance over the serial radix join by limiting the
application of vectorization techniques only to the join phase, i.e., serial partitioning
combined with a vectorized join. Similarly, we can expect the same kind of behavior
among the parallel variant and the variant implemented with both vectorization and
parallelization techniques.

Performance with Simultaneous Multi-Threading

Throughout our work, for our used multi-core architectures, we set only one thread per
core for carrying out the join operation. Thus, for the parallel radix join, we need to con-
firm their performance advantages when implemented on multi-architectures supporting
more than one hardware thread per core. With this, we can analyze their behavior with
respect to the exploitation of simultaneous multi-threading capabilities offered by such
architectures. Even though we observed reasonable scalability advantages for our par-
allel variant, we expect such benefits to degrade due to simultaneous multi-threading.
This is because, with simultaneous multi-threading, hardware resources (such as cache
memories) are always shared among multiple threads belonging to the same core and
hence, cache-conscious algorithms always suffer a major performance depreciation due
to simultaneous multi-threading.

Numerous researches in this context have already been analyzed for studying the be-
havior of the parallel radix join with respect to other hash join techniques. However,
there is not enough evidence about their behavior relative to other radix join variants
while exploiting the simultaneous multi-threading capability of multi-core CPUs. Thus,
it is important to analyze whether performance depreciation that is prone to occur due
to sharing of hardware resources would affect their overall performance against other
radix join variants.
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