
Otto-von-Guericke-University Magdeburg

Faculty of Computer Science
Department of Databases and Software Engineering

Parallelizing the Elf - A Task Parallel
Approach

Bachelor Thesis

Author:

Paul Blockhaus

Advisors:
Prof. Dr. rer. nat. habil. Gunter Saake

Dr.-Ing. David Broneske
Otto-von-Guericke-University Magdeburg
Department of Databases and Software Engineering

Dr.-Ing. Martin Schäler
Karlsruhe Institute of Technology

Department of Databases and Information Systems

Magdeburg, November 29, 2019

Acknowledgements

First and foremost I wish to thank my advisor, Dr.-Ing. David Broneske for sparking my
interest in database systems, introducing me to the Elf and supporting me throughout
the work on this thesis.

I would also like to thank Prof. Dr. rer. nat. habil. Gunter Saake for the opportunity to
write this thesis in the DBSE research group. Also a big thank you to Dr.-Ing. Martin
Schäler for his valuable feedback.

Finally I want to thank my family and my cat for their support and encouragement
throughout my study.

Abstract

Analytical database queries become more and more compute intensive while at the same
time the computing power of the CPUs stagnates. This leads to new approaches to
accelerate complex selection predicates, which are common in analytical queries. One
state of the art approach is the Elf, a highly optimized tree structure which utilizes
prefix sharing to optimize multi-predicate selection queries to aim for bare metal speed.
However, this approach leaves many capabilities that modern hardware offers aside. One
of the most popular capabilities that results in huge speed-ups is the utilization of multiple
cores, offered by modern CPUs. At this point our work comes into play, to bring multi
threading to the Elf.

In the scope of this thesis we introduce parallel queries to the Elf to accelerate multi-
predicate selections even further. Furthermore we will introduce concurrent insertions to
the Elf to bring it on a level that satisfies the requirements for state-of-the-art database
systems. To evaluate the results of our work, we compare our parallel query approach
to the original Elf. Therefore we utilize the state-of-the-art TPC-H benchmark to obtain
meaningful results for real-world workloads. Our findings indicate a speed-up of factor
4 to 11 compared to the serial Elf version. For our concurrent insertion algorithms, we
evaluate their performance in a synthetic benchmark under different write workloads.
Our algorithms are able to achieve a speed-up of up to factor 2.6 to 5.8 depending on the
workload.

Contents

Acknowledgements

Abstract

List of Figures 3

List of Code Listings 5

List of Algorithms 6

1 Introduction 7

2 Background 9
2.1 Parallel Computer Architectures . 9
2.2 Multithreading . 10

2.2.1 Blocking and Non-Blocking Algorithm 10
2.2.2 Atomic Instructions . 12
2.2.3 Transactional Memory . 14
2.2.4 Linearisability . 16
2.2.5 Asynchronous Programming . 16

2.3 The Elf . 17
2.3.1 Write-Optimized Elf . 17
2.3.2 Read-Optimized Elf . 17

2.4 Non-Blocking Data Structures . 19
2.4.1 Skip Lists . 19
2.4.2 Non-Blocking Vector . 20

3 Related Work 22

4 Query Parallelization 24
4.1 Range-Parallel Traversal . 25

4.1.1 Implementation . 27
4.2 Subtree-Parallel Traversal . 29

4.2.1 Implementation . 30
4.3 Node-Parallel Traversal . 32

4.3.1 Implementation . 33
4.4 Result Merging Strategies . 36

4.4.1 Serial Merge . 36
4.4.2 Hybrid Merge . 37
4.4.3 Parallel Merge . 38

4.5 Linearisability . 39

1

Contents

5 Insert Parallelization 40
5.1 Blocking Parallel Insertion . 40

5.1.1 Node Structure . 41
5.1.2 Implementation . 42

5.2 Non-Blocking Parallel Insertion . 45
5.2.1 Range Find for Transactional Skip List 46
5.2.2 Range Find for Lock-Free Skip List 47
5.2.3 Transactional Node Structure . 48
5.2.4 Lock-Free Node Structure . 50
5.2.5 Implementation . 51

5.3 Linearisability . 52

6 Evaluation 54
6.1 Merging Strategies . 55
6.2 Query Approaches . 56

6.2.1 Microbenchmark . 56
6.2.2 TPC-H Benchmark . 57

6.3 Concurrent insertion . 60
6.3.1 Locking Parallel Insertion . 60
6.3.2 Lock-Free Parallel Insertion . 62
6.3.3 Transactional Parallel Insertion . 63
6.3.4 Elf Storage Consumption . 65

7 Conclusion 68
7.1 Concept & Implementation . 68
7.2 Evaluation . 68
7.3 Future Work . 70

Appendices 71
A Locking Insert Benchmarks . 71
B Lock-Free Insert Benchmarks . 72
C Transactional Insert Benchmarks . 74

Bibliography 76

Statement of Authorship / Selbstständigkeitserklärung 80

2

List of Figures

2.1 Flynn’s Taxonomy . 9
2.2 Example Table Data with Corresponding Conceptual Elf 17
2.3 Conceptual Elf Example with MonoLists 18
2.4 Linearisation of the Example Elf . 18
2.5 First Dimension Hash Map Transformation 19
2.6 Example Skip List . 19

4.1 Example First Dimension Partition . 25
4.2 First Dimension Traversal . 29
4.3 Example Node-Parallel Traversal . 32

5.1 Locking Elf Nodes . 41
5.2 Transactional Elf Nodes . 49
5.3 Lock-Free Elf Nodes . 50
5.4 Non-Linearisable History . 53

6.1 Average Merging Times . 55
6.2 Average Range Query Time for 1,000 Repetitions With Scaling Factor 100 56
6.3 TPC-H Queries Speed-Up for Subtree- and Range-Parallel Elf Compared

to Serial Query Times . 58
6.4 Average Query Times of all Traversals for the Lineitem Table With Scaling

Factor 100 . 59
6.5 Locking Parallel Insertion Times With 10% Writes 61
6.6 Locking Parallel Insertion Times With 75% Writes 61
6.7 Lock-Free Parallel Insertion Times 10% Writes 62
6.8 Lock-Free Parallel Insertion Times With 75% Writes 63
6.9 Transactional Parallel Insertion Times With 10% Writes 64
6.10 Transactional Parallel Insertion Times With 75% Writes 65
6.11 Storage Consumption of the Different Elf Structures for 1 Million Tuples

of the Lineitem Table . 66

A.1 Locking Parallel Insertion Times With 25% Writes 71
A.2 Locking Parallel Insertion Times With 50% Writes 71
A.3 Locking Parallel Insertion Times With 90% Writes 72
A.4 Locking Parallel Insertion Times Write Only 72
B.1 Lock-Free Parallel Insertion Times With 25% Writes 72
B.2 Lock-Free Parallel Insertion Times With 50% Writes 73
B.3 Lock-Free Parallel Insertion Times With 90% Writes 73
B.4 Lock-Free Parallel Insertion Times Write Only 73
C.1 Transactional Parallel Insertion Times With 25% Writes 74
C.2 Transactional Parallel Insertion Times With 50% Writes 74

3

List of Figures

C.3 Transactional Parallel Insertion Times With 90% Writes 74
C.4 Transactional Parallel Insertion Times Write Only 75

4

List of Code Listings

2.1 Example Data Race During Concurrent Modification of a Bank Account . 10
2.2 Speculative CAS Execution Example . 12
2.3 The ABA Problem . 13

5

List of Algorithms

1 Range Traversal . 27

2 Range Traversal Thread . 28

3 Subtree-Parallel Traversal . 30

4 Subtree Traversal Thread . 31

5 Node-Parallel Traversal . 33

6 DimensionList Parallel Traversal . 35

7 Serial Merge . 37

8 Hybrid Merge . 37

9 Parallel Merge . 38

10 Locking Parallel Insertion . 44

11 Transactional Skip List Range Search . 47

12 Lock-Free Skip List Range Search . 48

13 Non-Blocking Parallel Insertion . 51

6

1 Introduction

In the last decades, the demand for database systems grew explosively. At the same time,
alongside with online transaction processing (OLTP), which facilitates large amounts
of short concurrent read-write workloads, long running complex mostly read workloads
for analysis (OLAP) became more important [Plattner, 2009]. Also on the hardware
site, used technologies evolved immensely. Disk-based systems, which were bottlenecked
by the access to rotating disks developed to main-memory systems and the bottleneck
of latency and bandwidth to second level storage was replaced by the bandwidth and
latency bottleneck of main-memory. Research is now focused on main-memory struc-
tures to minimize this bottleneck [Rao & Ross, 2000], [Boncz, Kersten, & Manegold,
2008].

Nowadays there exist large data warehouses, holding thousands of terabytes of data. They
need to scan this data within the smallest amount of time possible to answer complex
analytical queries. Those analytics often contain queries with multiple selection predi-
cates. For these kind of queries, multidimensional data structures [Gaede & Günther,
1998] are used to accelerate the queries. State-of-the-art multi-dimensional main-memory
index structures [Sprenger, Schäfer, & Leser, 2019], [Zäschke, Zimmerli, & Norrie, 2014]
even go a step further and optimize the cache efficiency and use extended capabilities of
the CPU to parallelize the queries any further.

However, most state-of-the-art multi-attribute data structures do not utilize the fact that
the combination of multiple selection predicates drastically reduces the selectivity of the
data. This is where the Elf comes into play. The Elf is "a tree-based index structure
for multi-column selection predicate queries featuring prefix-redundancy elimination and
a memory layout tailored to exploit modern in-memory technology" [Broneske, Köppen,
G., & Schäler, 2017]. By exploiting multiple selection predicates at once, the Elf is
able to outperform other main-memory index structures [Sprenger et al., 2019] and even
parallel scans [Willhalm et al., 2009] provided the selectivity of the query is low enough.
However, this comparison is not particularly fair, since unlike parallel scans, the Elf is
only a serial data structure and as thus does not fully utilize all capabilities of modern
CPU architectures to reach bare metal speed. Consequently, we want to examine the
parallelization capabilities of the Elf. Therefore we focus on using multiple CPU cores
concurrently to accelerate Elf queries and insertions.

Goals

The goal of this thesis is to evaluate the impact of multithreaded algorithms on the
performance of the Elf and thus prove our hypothesis that task parallelism is able to speed-
up the Elf approach even more. Therefore we contribute the following key contributions
in the frame of this thesis:

7

1 Introduction

1. We present the design of three different query algorithm using two different paral-
lelization strategies.

2. We propose concurrent insert algorithms adapting three state-of-the-art approaches.

3. We compare the performance of our algorithms to the serial Elf using the TPC-H
benchmark queries to get robust results which represent current real world work-
loads.

4. We compare our concurrent insertion implementation against the serial approach in
a microbenchmark to show the speed-up we are able to achieve.

5. We give an outlook to some promising research tasks to enhance the performance
of the Elf even further.

Thesis Outline

The structure of this thesis is as follows. We start by introducing the necessary back-
ground needed to understand this thesis in Chapter 2, starting with parallel computing
architectures with a focus on multithreaded structures and various concurrency schemes.
This is followed by an introduction into the concepts of the Elf. At the end we introduce
various non-blocking data structures we utilize in the next chapters. In Chapter 3, we
will discuss related approaches for parallel tree traversal and different insertion algorithms.
Our own contribution starts in Chapter 4, where we define our parallel query algorithms
as well as the related merge algorithms. his is followed by Chapter 5, in which we intro-
duce our concurrent insertion algorithms. Subsequentially, in Chapter 6 we evaluate our
contribution and discuss the evaluation results. Finally, in Chapter 7 we summarize the
thesis and give an outlook to possible future work.

8

2 Background

The goal of this thesis is to parallelize queries and modifications for the multi-dimensional
main-memory index structure Elf. Therefore in this chapter we introduce parallelization
techniques for modern x86 multi-core CPUs with particular regard to task-based paral-
lelism. Furthermore, we introduce the structure of the multi-dimensional main-memory in-
dex structure called Elf, as well as some further data structures.

2.1 Parallel Computer Architectures

In current parallel computer architecture, there are various different parallelization ca-
pabilities, which can be classified by the Flynn taxonomy [Flynn, 2011]. The Flynn
taxonomy comprises of four quadrants:

SISD MISD

SIMD MIMD

Instruction	Stream
Single Multiple

Si
ng

le
M
ul
ti
pl
e

D
at
a	
St
re
am

Figure 2.1: Flynn’s Taxonomy

Single Instruction Single Data (SISD) describes the traditional uni-processor architec-
ture. Instructions are executed sequentially on single data.

Single Instruction Multiple Data (SIMD) is the class of vector processing machines,
which execute the same instruction on multiple data in parallel.

Multiple Instructions Single Data (MISD) is an exotic redundant architecture, where
multiple processors execute instructions on the same data.

Multiple Instructions Multiple Data (MIMD) is often referred to as Multiprocessing
architecture and can execute various instructions on various data in parallel.

In the context of this thesis we focus on MIMD parallelism especially Multithreading since
it is widely available and suites best for our demands.

9

2 Background

2.2 Multithreading

Multithreading is a concurrency model for the MIMD architecture. It is available on
multiprocessor as well as uniprocessor machines even though it is not a MIMD architec-
ture in this case. To introduce concurrency, a process is split into smaller lightweight
subprocesses, so called threads.

Each thread runs independently from the other, which allows the execution of multiple
threads at the same time by multiple CPU cores, which is called Simultaneous Multi-
threading. For communication between threads, either a memory region is needed, where
all threads can write to and read from, or messaging channels for regulated communica-
tion must exist. The former is called Shared Memory the other is the Message Passing
Interface. Shared Memory has the advantage of being very lightweight compared to a
Message Passing Interface Protocol with relatively large communication overhead. For
this reason we decided to use shared memory, even though this approach must be used
carefully, otherwise data races can occur.

Since every thread can access shared memory at any time, multiple threads can parallelly
change, or access the same memory location. This can lead to a so called data race; data
races can occur at parallel changes on shared data, as for instance on Listing 2.1, which
is an example for two parallel banking transactions.

1 thread T1 ;
2 thread T2 ;
3 var Account = 100 ;
4 start T1 ;
5 // execution block of T1
6 var tmp_t1 = Account ; //100
7 preempt T1 ;
8 start T2 ;
9 // execution block of T2

10 var tmp_t2 = Account ; //100
11 Account = tmp_t2 + 50 ; // add 50
12 T2 preempt ;
13 // execution block of T1
14 Account = tmp_t1 + 70 ; // add 70
15 /∗ Account = 170 , one transaction got lost ! This data race occurred , because both ←↩

variables were read and written back independently .∗/

Listing 2.1: Example Data Race During Concurrent Modification of a Bank Account

In this example, each of the two threads T1 and T2 performs a modification on the same
Account. Therefore, each thread reads the current value of Account-variable into its own
memory (q. v. Lines 6 and 10) and gets preempted before it can write the result back.
In the next step the actual data race occurs, which is in this case a lost update. T2 writes
its result as first back into the Account variable in Line 11. Then T2 gets preempted and
T1 writes its data back in Line 14, ignoring that the value of Account has just changed,
which leads to the data race.

2.2.1 Blocking and Non-Blocking Algorithm

To avoid data races, locks are usually used to protect the critical section. The critical
section should not be executed in parallel for all threads except the one that is currently

10

2 Background

executing in this section. In order to avoid concurrent access on critical sections, several
different locking techniques exist:

Semaphore are resource counters, which allow only a specified amount of concurrent
executions of the critical section[Dijkstra, 1962]. When the limit is reached, all
threads that want to execute the critical section code must wait until a contingent
for them is available.

Mutexes are essentially binary semaphore, where only one thread is allowed to execute
the critical section at once.

RW-Mutexes are mutexes, that can be locked in two ways [Fraser, 2004]. One way is to
lock the mutex in read-only mode, this lock does not acquire exclusive access to the
protected resources and can be acquired multiple times concurrently. The write lock
only allows read operations to be safe, write operations can be executed by a read
lock. A read lock blocks any access to the protected resources and thus prohibits
concurrent writes or reads while modification. With this properties a RW-mutex is
able to allow multiple readers safe concurrent access to the protected resources but
also make it possible to protect the resource from concurrent writes.

Spinlocks are condition variables on which all threads loop until the thread in the critical
section finishes. This locking is done in user space and can be faster sometimes but
has the drawback that the waiting threads are actively using resources while busy
waiting. This can lead to delaying of the thread currently executing the critical
section, because the scheduler can not preempt the spinning threads early.

In most cases locking is achieved with mutexes; there are different techniques how mutexes
can be implemented. One is hardware lock support or atomic operations such as test-and-
set or Compare-And-Swap (CAS). As a substitute when no hardware support is available,
algorithms such as Dekker’s algorithm come into play. However, these algorithms require
a strict ordering of instructions and memory access, which is not granted by modern CPUs
which perform out-of-order execution.

To overcome the disadvantages of locking, there exist non-blocking algorithms with dif-
ferent guarantees regarding the progress of an algorithm. M. Herlihy et al. classified
three guarantees, that non-blocking algorithms can give [M. Herlihy, Luchangco, & Moir,
2003]:

Obstruction-Free: An algorithm is obstruction-free if at any point, a single thread is
executed in isolation (i.e., with all obstructing threads suspended) and will complete
its operation in a bounded number of steps.

Lock-Free: An algorithm is lock-free if, when the program threads are run for a suffi-
ciently long time, at least one of the threads makes progress (for some reasonable
definition of progress).

Wait-Free: An algorithm is wait-free if every operation has a bound on the number
of steps the algorithm will take before the operation completes. This property is
critical for real-time systems and is always nice to have as long as the performance
cost is not too high. It guarantees lock-freedom and starvation freedom.

11

2 Background

Obstruction freedom is the smallest guarantee that a non-blocking algorithm can give, it
only guarantees termination. The next better guarantees come from lock-freedom which
gives the additional guarantee of system throughput. The third and strongest guarantee
is the wait-freedom, which guarantees lock-freedom and starvation freedom, which means
the system is guaranteed to make progress. To implement non-blocking algorithms mostly
atomic instructions are used.

2.2.2 Atomic Instructions

Atomic instructions are lock-free instructions that are free of data races. Since it is com-
plicated to achieve atomicity, the set of atomic instructions is quite small. Most of the in-
structions are simple arithmetic, fetch and store, as well as binary instructions. The most
important instruction in this work in particular is the atomic CAS instruction. It allows
to compare a value with a desired value and swaps the value with a third when both are
identical; all this is done in one step without locks needed.

1 pointer L ;
2 do {
3 var A = ∗L ;
4 var B = new var V
5 } while (! cas (L , A , B)) ; // Meanwhile L could have changed to B and back to A again

Listing 2.2: Speculative CAS Execution Example

Unfortunately most complex algorithms such as database transactions or even a simple
doubly linked list require reads and writes at multiple locations. Those algorithms can
not be simply adapted to the use of atomic instructions, since most architectures have
no support for multi-word CAS instructions to modify multiple memory locations atom-
ically. Usually the workaround is to read a memory location multiple times and execute
a CAS speculatively like we show in Listing 2.2 adapted from [Dechev, Pirkelbauer, &
Stroustrup, 2010]. The disadvantage of this workaround is, that it is prone to the ABA
Problem.

The ABA Problem

The ABA in the ABA Problem is no abbreviation, ABA stands for the variable changes
from A to B and back to A. The problem occurs when multiple threads access the same
data interleaved; Dechev et al. give a definition as follows in Listing 2.3:

12

2 Background

1 val A ;
2 val B ;
3 pointer ∗L = A ;
4 thread T1 ;
5 thread T2 ;
6 start T1 ; \\ execution block of T1
7 read ∗L ; \\ read A from L
8 T1 preempt ;
9 \\ execution block of T2

10 read L ; \\ read A from L
11 ∗L = B ;
12 ∗L =A ;
13 T2 preempt ;
14 \\ execution block of T1
15 read ∗L ; //∗L is A again and T1 does not see the changes made by T2

Listing 2.3: The ABA Problem

The former listing defined the sequence of operations which result in the ABA Problem.
Two threads T1 and T2 both read from the shared memory location L. The first reading
thread is T1 in Line 7. Afterwards, the thread is preempted and T2 modifies the value
of L from A to B in Line 11. Since the processing quantum of T2 is not exceeded yet it
also modifies the value of L back to A in Line 12. Now, T2 is preempted and T1 reads L
again in Line 15 to ensure that no other thread accessed L in the meantime. Since L was
changed from A to B and back and T1 is not able to recognise this changes made by T2 and
assumes that no other thread accessed L in the meantime.

While this behaviour might not be a problem for integral data types, it can have im-
mense effects on the semantic of an algorithm if the value was a reference or a pointer.
Even though the program usually continues without problems, its state can be incon-
sistent due to modifications that were missed by T1. To overcome this issue, there
are several solutions for this problem partially listed in “Understanding and Effectively
Preventing the ABA Problem in Descriptor-Based Lock-Free Designs” by Dechev et
al.:

Deferred Reclamation through garbage collection e.g. with reference counting [Detlefs,
Martin, Moir, & Steele, 2001], Hazard Pointers [Michael, 2004] or Read Copy Update
(RCU) [Mckenney et al., 2001] is one solution for the ABA Problem. This technique
tracks the memory uses and defers the reuse of memory locations until the ABA
Problem can not occur.

Tagged Pointers first proposed in “IBM System/370 Extended Architecture — Princi-
ples of Operation” are another circumvention technique, which couples a pointer
with a tag, e.g., by using a part of the address as a mutation counter. This ef-
fectively prevents the ABA Problem by always mutating the A to an A’, provided
the mutation counter is chosen at least large enough to prevent an overflow. If this
is not the case, this technique is ineffective because tags would also underlie the
ABA Problem. Even though a 64 bit tag would overflow after 10 years permanently
permuting 1.

Extra level of indirection Indirection implicates that all values are stored in shared mem-
ory indirectly through pointers. Each write of a given value to a shared location
needs to allocate a new reference on the heap and finally safely delete the pointer
value removed from the shared location.

1http://ithare.com/cas-reactor-for-non-blocking-multithreaded-primitives/

13

http://ithare.com/cas-reactor-for-non-blocking-multithreaded-primitives/

2 Background

Descriptors proposed by Dechev et al. are objects which describe the current operation
and the current state of the operation, which has to be executed. All threads are
helping to finish these operations and when finished, the next descriptor is inserted
in a way that no ABA Problem occurs.[Dechev et al., 2010]

In the scope of this thesis, we presume, that no memory is reused in our algorithms.
Furthermore the ABA Problem does not harm the correctness of our evaluation results,
since we do only insert and query integral data and pointers whose memory reuse is
prohibited.

Fortunately there exists another more optimistic approach, which does not need complex
ABA Problem prevention techniques. And is thus is potentially able to achieve compara-
ble performance without CAS instructions, instead the approach relies on transactional
memory.

2.2.3 Transactional Memory

Transactional memory works in transactions similar to transactions in database systems
[Saake, Sattler, & Heuer, 2011],[Maurice Herlihy & Moss, 1993] as they either complete
successfully or not at all. A transaction is a sequence of memory modifications, which
are executed on a best effort basis. If another concurrent modification interferes with
the transaction, all modifications made by the transaction are rolled back. Furthermore
transactions are also serializable, which means transactions are executed serially and
can never run interleaved. This model can be extended to support overlapping as well as
nested transactions but is rarely used because of the large overhead they introduce. Thus,
they are insignificant in practice and rarely implemented. Transactional memory can be
implemented in hardware - so called Hardware Transactional Memory (HTM) - as well as
in software - Software Transactional Memory (STM).

Hardware Transactional Memory

In HTM, the processor has a special instruction set extension for memory transactions
and thus is able to perform transactions with hardware support. This can speed up
memory transactions drastically against software transactions but has currently some
limitations. One possible implementation for transactional memory on hardware is to
add a transactional first level cache of the processor and thus split the cache into a
regular non-transactional, and a full-associative transactional cache with additional logic
to support the commit and abort of transactions [Maurice Herlihy & Moss, 1993]. This
implementation of transactional memory needs only minimal changes to the existing cache
coherency protocols and is thus one of the easiest to implement. Furthermore it has no
drawbacks.

At the beginning of a transaction, the processor starts using the transactional cache and
blocks the non-transactional cache to save all the writes to memory locations but no
changes are written to memory. When the transaction aborts, the cache is invalidated
and the transaction is discarded. Otherwise, when the transaction commits, the changes
in the transactional cache are written to the memory in parallel in a single cache cycle
since the cache is fully associative. As a consequence, the size of the transactions is

14

2 Background

limited by the size of the cache, a single scheduling quantum and other architectural
limits.

Currently the only implemented instruction set extension for transactional memory on
the x86 architecture comes from Intel and is called TSX-NI. TSX-NI delivers two func-
tionalities, one is Hardware Lock Elision (HLE), the other is the Restricted Transactional
Memory extension (RTM), which implements the four following instructions with the
following functionalities [Intel, 2019a]:

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes
the execution of the fallback path of the outermost XABORT instruction.

XBEGIN The XBEGIN instruction specifies the start of an RTM code region. If the logical
processor was not already in transactional execution, then the XBEGIN instruction
causes the logical processor to transition into transactional execution. The XBEGIN
instruction that transitions the logical processor into transactional execution is re-
ferred to as the outermost XBEGIN instruction. The instruction also specifies a rela-
tive offset to the fallback path following a transactional abort. On an RTM abort,
the logical processor discards all memory updates performed during the RTM ex-
ecution and restores the state corresponding to the outermost XBEGIN instruction.
The fallback path of the outermost XBEGIN instruction following an abort is used.

XEND The instruction marks the end of an RTM code region. If this corresponds to the
outermost scope (that is, including this XEND instruction, the number of XBEGIN
instructions is the same as number of XEND instructions), the logical processor will
attempt to commit the logical processor state atomically. If the commit fails, the
logical processor will rollback all memory updates performed during the RTM ex-
ecution. The logical processor will resume execution at the fallback path from the
outermost XBEGIN instruction.

XTEST The XTEST instruction queries the transactional execution status. If the instruc-
tion executes inside a transactionally executing RTM region or a transactionally
executing HLE region it sets the corresponding flag.

Software Transactional Memory

Software transactional memory follows the same concept as HTM but does not require any
form of architectural support for memory transactions. There exist many different imple-
mentations [Spear, Dalessandro, Marathe, & Scott, 2009] [Maurice Herlihy, 1993] [Lev &
Maessen, 2008] [Shavit & Touitou, 1997] [Felber, Fetzer, & Riegel, 2008].

The first and most simple one is known as Herlihy’s method. A transaction with this
method consists of a k-word CAS, which commits the transaction previously cached in
regular memory. The nature of CAS guarantees system progress, so that the transaction
eventually succeeds.

For this theses we use a library called libitm, which supports HTM as well as STM with
various different algorithms as fallback. The STM implementation that comes closest to
the one used per default by the libitm implementation is the one by Felber et al. The solu-
tion used by libitm is based on a lazy multi-locking scheme. This means, that the locations

15

2 Background

which are to be modified by a transaction are locked only in the last step, when the trans-
action is not aborted and commits its changes. Before this locking takes place, all modifi-
cations are added to a transaction log which is only flushed when no conflicting transaction
accesses data that should be modified in the meantime.

2.2.4 Linearisability

To reason about correctness about non-blocking algorithm, one of the most used criteria
is the linearisability formulated by M. P. Herlihy and Wing. Linearisability states [M. P.
Herlihy & Wing, 1990]:

1. Processes act as if they were interleaved at the granularity of complete operations.

2. The operations seen as apparently sequential interleaving respects the real-time
precedence ordering of operations.

This allows intuitive reasoning about the behaviour of the algorithm, making it suitable for
all purpose use without paying attention to complicated special cases.

2.2.5 Asynchronous Programming

Until now we described rather low level architectural details. For our work we also
used some techniques form another programming model, the asynchronous programming
model. This model is more abstract than Multithreading and bases on the idea that por-
tions of code can be run asynchronously in so called tasks. Later, after the execution of
the task finished, results can be retrieved, but tasks that depend on other tasks can also
wait on the calculation results.

To reach this kind of cooperation, special objects exist which hold the calculated data
and can be used to wait for results [Friedman & Wise, 1978]. These objects are called
promises and futures.

Promise is an object, which represents the assurance of the called object, that can pass
the result to the caller via the associated future.

Future is an object, which represents a future value, which will become available when
the associated promise is redeemed and finishes. Until the result value is not ready,
it is possible to block and wait for the result.

With these two synchronisation primitives, it is possible to hide locking effectively behind
design patterns as well as reaching data race freedom, since the objects itself act as a
message passing protocol.

16

2 Background

2.3 The Elf

The Elf is a prefix-sharing multi-dimensional main-memory data structure invented by
Broneske et al.

C1 C2 C3 C4 TID
0 1 0 0 T1
0 1 3 1 T2
0 2 0 1 T3
1 0 1 1 T4
2 1 2 2 T5
2 3 2 0 T6

(a) Example Table

0 1

1 2

2

0 1

0 0 1 2

0|T1 1|T3 1|T4 0|T6

Column	C1

Column	C2

Column	C3

Column	C4

3

1|T2

3

2

2|T5

(b) Conceptual Elf

Figure 2.2: Example Table Data with Corresponding Conceptual Elf

In Figure 2.2, we show an example of the Elf s structure. Each level of the Elf corresponds
to one Column and parent nodes act as shared prefix from the previous dimensions. For
example the left most path represents the tuple T1 with the column data 〈0, 1, 0, 1〉. In the
last dimension besides the last value of the column stands the TID. The Elf comes in two
variants, each optimized for a either read or write workloads, but the overall conceptual
structure remains.

2.3.1 Write-Optimized Elf

The write-optimized Elf consists of as much level as number of columns indexed, whereas
each DimensionList is a sorted array with key-value pairs. The key is a 32-bit value
of the column, the value is a pointer to the next dimension. The last dimension only
consists of the last value and TIDs; this structure leads to prefix sharing and drastically
reduces the storage consumption. Furthermore the dimension lists can be searched in
logarithmic time since the lists are sorted and have random access. On the other hand,
prefix sharing leads unlucky distribution and sparse subtrees that degenerate to linked
lists, which have a rather large traversal overhead compared to the DimensionLists. This
problem is addressed together with further query performance optimizations in the read-
optimized Elf.

2.3.2 Read-Optimized Elf

The read-optimized Elf features three major optimizations Linearisation, Perfect Hash
Map for first dimension and MonoLists to improve the query performance at the cost of
more complex modification.

17

2 Background

MonoLists

As one can observe in Figure 2.2, the Elf gets parse and degrades to a linked list with
growing dimension. To optimize the storage consumption and traversal for this case,
Broneske et al. introduced a technique called MonoLists, which compresses the linked-list
subtree to an array with the remaining dimensions and TID data, as we show in Figure
2.3.

0 1

1 2

2

1

0

0|T1 1|T3 1|T4

3

1|T2

3

2

2|T5

1

0

0 2

0|T6

Column	C1

Column	C2

Column	C3

Column	C4

Figure 2.3: Conceptual Elf Example with MonoLists

To signal, that the pointer to the next dimension points to aMonoList, the most significant
bit (MSB) is set on the pointer value.

Linearisation

As we show in the example linearisation in Figure 2.4, the Elf is linearised into an array
and the pointers to the next dimension are replaced with array offsets. Additionally,
the end of a dimension list must be marked, since there is no longer a separate memory
region per DimensionList. This is achieved by setting the MSB on the last value of the
DimensionList. This linearisation results in a better cache performance and less page
faults due to the absence of pointers and one large continuous memory region in which
all data lie.

0 1

1 2

2

1

0

0|T1 1|T3 1|T4

3

1|T2

3

2

2|T5

1

0

0 2

0|T6

Column	C1

Column	C2

Column	C3

Column	C4

(a) Conceptual Elf

0 1 2 3 4 5 6 7 8 9
0 1 -2[06] 1 -2[10]
0 -3-[14] -0 T1-[16] -1

-[18]
0 -1

T3

-[21]

0 1 -1 T4

[25]
T2

1 -3-[29] 2
T5-2

-[32]
2 -0 T6

ELF[00]
ELF[10]
ELF[20]
ELF[30]

(b) Linearised Elf Layout

Figure 2.4: Linearisation of the Example Elf

First Dimension Hash Map

Since all values of the first dimension are listed together with their pointers to the next
dimension, it is rather costly to perform a search for lower and upper boundaries on this
list. To overcome this issue, a perfect hash map in form of a dense array is used as we
depict in Figure 2.5.

18

2 Background

0 1 2 3 4 5 6 7 8 9
0 1 -2[06] 1 -2[10] -[18]-[21] [25]ELF[00]without

hash	map

with	hash
map

0 1 2 3 4 5 6 7 8 9
[03] 1 -2[7] -[15]-[18][22]ELF[00] 0 -3-[11]

Figure 2.5: First Dimension Hash Map Transformation

Now every index of the array corresponds to the value to which it holds the pointer.
Additionally some space is freed, since the value must no longer be stored explicitly. On
the other hand this technique can lead to big holes in the first dimension array, which
costs much memory. However when assumed the values in the first dimension are dense
this is not the case.

2.4 Non-Blocking Data Structures

2.4.1 Skip Lists

A Skip List is a probabilistic linked data structure invented by Pugh et al., which has aver-
age case logarithmic search and insertion time complexity [Pugh, 1990].

1 2 3 5 8 13

head tail

Nil

Nil

Nil

Nil

Nil

Figure 2.6: Example Skip List

As one can see in Figure 2.6, the structure of a skip list is a sorted linked list of all elements
on the bottom lane and all other lanes act as fast lanes to skip some of the intermediate
nodes.

Traversal

The traversal of a skip list is shaped very simply. The traversal begins at the head sentinel
node of the skip list with the entry on the highest dimension and traverses the dimension
until the next value is larger than the value to find. In the next step, the next lower fast
lane is used; this repeats until the level is zero and the corresponding value is either found
or the next value is higher than the searched one.

19

2 Background

Insertion

For an insertion into a skip list, a traversal is used to determine the insert position, while
recording the preceding nodes on every level. Then a insert level of the value is chosen
randomly with a probability of the geometric distribution, where typical probabilities are
p = 1

2 or p = 1
4 . From this level on to level 0 all previous nodes are changed to point to the

new inserted node and all next elements of the preceding nodes are now the predecessors
of the newly inserted node.

Lock-Free Skip List

The lock-free skip list is a modification of the original skip list by Fraser et al. to become
a non-blocking concurrent data structure. Therefore he utilized a technique called pointer
marking [Harris, 2001] to describe the current state of a list element.

Pointer marking bases on the assumption, that pointers are aligned to the native architec-
tural bandwidth. Therefore some bits which are unused due to the alignment can be used
for signalling the state of the list nodes. In combination with atomic pointers this allows
logic operation announcement before the actual operation is executed, which effectively
prevents concurrent operations to interfere with others. In case a list pointer is marked,
the operation is aborted and restarted until it succeeds.

HTM Skip List

The hardware transactional skip list also utilizes pointer marking to guarantee a consistent
state between the transactions. Furthermore, in the actual insertion of new nodes a
transaction is used to insert the node on all levels, assumed the predecessors haven’t
changed their logical state. In this case the transaction is aborted and the complete
insertion is retried.

2.4.2 Non-Blocking Vector

While a resizeable array, often called vector of continuous memory is one of the simplest,
yet cache friendliest and most perfect fit data structures, it becomes significantly more
complex to handle in concurrent Programming. The idea of a resizeable array is, that
once it becomes full, a new larger array is allocated, the contents from the old array
copied over to the new one and finally the old array is deallocated and replaced by the
new.

This process is simple when executed serially, but because the process may need a long
time and at this time no access is allowed to the resizeable array. This is complicated
to achieve in a parallel environment without blocking access to the data structure. Nev-
ertheless there are some lock-free versions of resizeable arrays which could also improve
performance over a locking implementation [Dechev, Pirkelbauer, & Stroustrup, 2006],
[Feldman, Valera-Leon, & Dechev, 2016] as well as the concurrent_vector 2. The

2https://software.intel.com/en-us/node/506203

20

https://software.intel.com/en-us/node/506203

2 Background

concurrent_vector is the non-blocking vector implementation in Intel’s Thread Building
Blocks library, a library which aims to provide common concurrent data structures and
algorithms.

21

3 Related Work

In this chapter, we briefly introduce some works which are related to the context of this
thesis and from which we adapted some techniques for our algorithms.

Hardware-sensitive Index Structures

State of the art multidimensional index structures are clearly all focussing on the use-
case as a main-memory index structure. Sprenger et al. proposed an index structure,
which utilizes SIMD parallelism to accelerate its node scans and parallelize the result
gathering phase with multithreading. Kim et al. proposed an index structure called FAST,
which is architecture sensitive supporting parallelized CPU and GPU traversal. Similar
approaches to make index structures hardware sensitive do also exist for one dimensional
data structures such as the B-Tree [Levandoski, Lomet, & Sengupta, 2013]. Most of this
work utilizes multiprocessing for concurrent queries and only SIMD for parallel traversal.
Since vector parallelism is out of this scope, we do not adapt most of the proposed
optimizations of this works.

Parallel Tree Traversal

Proposed strategies from which we can adapt some techniques are at first a general ap-
proach for distributed tree traversal. The distributed tree traversal by Ferguson and Korf
, is until now one of the most used algorithm in this category. When we come to some
fine-tuning decisions. There was some recently published work aiming to parallelize con-
ventional multi-dimensional index structures such as the kd-Tree, R∗-Tree and the VA-File
using horizontal parallelization [Sprenger, Schäfer, & Leser, 2018]. Since the concept of
horizontal parallelism has shown as a very effective technique for task parallelism, also
all our query algorithms are designed in a horizontal parallel fashion. Furthermore, for
our node-parallel traversal we adapt the distributed tree traversal with a vertical parallel
traversal.

Related Concurrent Insertion Approaches

Regarding concurrent insertions, there exist several works, which develop advanced lock-
ing schemes. One major work in this area is a RW-locking scheme used for parallel
insertion into a B-Tree [Bayer & Schkolnick, 1977] similar to the one we use in our work
to reduce contention during insertions. We will utilize this approach in our locking in-
sertion algorithm, however since the Elf is dissimilar with a B-Tree in many points, we
need do some major adaptions to the scheme. Also for lock-free concurrent insertions,
there exists some similar work utilizing CAS-instructions for concurrent insert in B-trees

22

3 Related Work

[Braginsky & Petrank, 2012]. Together with another approach by Chatterjee, Walulya,
and Tsigas, which propose a linearisable nearest neighbour query algorithm for a lock-free
kd-Tree, we use the tagging flags and a similar algorithm utilizing CAS-instructions to
insert new data.

23

4 Query Parallelization

In the previous chapter we introduced the multi-dimensional main-memory index struc-
ture Elf. The Elf, even though a state-of-the-art highly optimized data structure, currently
only supports serial queries and modification. This leads to the fact that a lot of optimiza-
tion potential is unused. For this reason, we introduce in this chapter some approaches
to parallelize the queries for the Elf without modifying its structure as well as concur-
rent modifications on the write-optimized Elf including adaption of the original Insert Elf
version in the next chapter.

The Elf approach features several important properties and optimizations that render it
the perfect structure for serial query execution. However, these properties lead to an
imbalanced work when traversing the tree, which makes it challenging to find the perfect
workload partitioning for concurrent Threads. In the following, we shortly outline three
possible parallelization strategies for the Elf. Queries on Elf are executed in a depth first
manner, whereas the first dimension does not have to be traversed sequentially to find the
start and end of the traversal range. It can just be accessed directly by the value as offset
in the array. This structure leads to a simple and intuitive first parallelization approach.
The first dimension is just partitioned into P approximately equal parts, where P is the
number of processor cores of the system. Then each thread traverses its subtree range
independently.

Now, that the actual traversal has finished, the results can either be returned directly or
merged into a single array. In the first case, the results are a list of TID arrays, which
contain the TIDs in depth first search order. In the other case the data need to be merged
into one result array. We decided to use the latter approach, not only to remain fully
compatible with the original Elf implementation, but also preserve the comparability
between our approach and the original implementation as well as other approaches by
attaining the same output.

As previously mentioned, the next step is merging of the results into one array. Therefore,
the result storage size is determined and the corresponding write positions for every thread
are calculated by prefix summing. Finally those results are written in parallel to the result
storage.

One property of the Elf is, that it is not balanced due to prefix sharing and postfix lin-
earisation in form of MonoLists. This could potentially lead to a performance loss due
to waiting of the finished threads for one thread that has more to traverse. Therefore
we changed the subtree traversal range to a single subtree per thread at a time in a
round-robin fashion. This should make the traversal more insensitive to strong imbal-
ance in the Elf. However this approach can still suffer from a non-dense first dimen-
sion.

In the case that sub trees have a big variation in their fan-out, most threads could have
finished their execution since the last values in the first dimension have no subtree, but

24

4 Query Parallelization

the last thread could still run a long time if its subtree is large. For such a case, an
approach similar to distributed tree search [Ferguson & Korf, 1988] could help preventing
the problem. Our third traversal is based on per node traversal and work sharing between
the threads. And while this can be seen as the best version, this algorithm is far more
complex and needs potentially costly inter-thread communication. Since all algorithm we
introduce consist of two stages, the actual traversal and the merging phase, there are also
multiple merging strategies too. They range from simple serial merge to a full parallel
one.

In the following we will discuss in detail every of the three traversal algorithms we in-
troduce starting with the naive range-parallel traversal, following the subtree-parallel
traversal and at last the node-parallel traversal. Furthermore, we introduce strategies
which we use for our result merging.

4.1 Range-Parallel Traversal

To achieve maximum parallelizability, an algorithm should divide its problems into smaller
pieces, which can be independently solved. This means that if there is no inter-thread
communication and no merging step of the sub-results, we should reach the best speed
up possible. For parallel tree traversal it generally is not possible to achieve both because
either there must be some communication of the threads to avoid result merging, or there
is an extra merging phase. Furthermore for better maintainability of code especially in
parallel programming, it is good to build on the single threaded version for the parallel
algorithm. Resulting from this consideration, our reference implementation is to split
the single threaded traversal into equal parts and then use the single threaded traversal
independently in parallel for the sub-range traversal. We show an example traversal in
Figure 4.1.

0 1

1 2

2

1

0

0|T1 1|T3 1|T4

3

1|T2

3

2

2|T5

1

0

0 2

0|T6

Column	C1

Column	C2

Column	C3

Column	C4

Thread	2Thread	1

Figure 4.1: Example First Dimension Partition

In this example, the Elf is traversed by two threads, partitioning the first dimension
as equally es possible between them. Afterwards each thread traverses its own subtree.
This split traversal technique is, on the one hand very efficient since the sub-problems
can be independently solved, on the other hand this approach needs a merging phase
of the sub-results after the parallel traversal has finished. Nevertheless with this ap-
proach we have reused already optimized existing code. Furthermore this approach is

25

4 Query Parallelization

very common to parallelize problems efficiently and fits perfectly as a reference imple-
mentation which we try to improve with the following three approaches. In fact, the
Range-Parallel Traversal is a hybrid of the single threaded depth first traversal and a
breadth first traversal. Whereas multiple threads traverse each of their ranges in a depth
first search while the first dimension is traversed in breadth by the partitioning into sub-
ranges.

26

4 Query Parallelization

4.1.1 Implementation

The simplest yet smallest overhead version is the range-parallel traversal. Since the first
dimension of the read-optimized Elf consists of a perfect Hash Map designed as an array
with indexes as keys, we can simply partition the search range of the first dimension as
we show in Figure 4.1.

Algorithm 1: Range Traversal
Input: Int[] &lower, Int[] & upper, Int numThreads
Result: Vector<TID> result

1 Function searchMCSP(lower, upper, numThreads) {
2 Future<Vector<TID>> threads[numThreads];
3 Int stepSize = (upper[0] - lower[0] + numThreads - 1) / numThreads;
4 Atomic<Int> resultSize = 0;
5

6 for Int i = 0 to numThreads do
7 threads[i] = async searchMCSPThread(lower, upper, i, stepSize, resultSize);
8 end
9

10 Vector<TID> intermediateResults[numThreads];
11 foreach thread ∈ threads do
12 intermeds += thread.get();
13 end
14

15 return merge(intermediateResults, resultSize);
16 }

To achieve this, we partition the search space from the lower bound to upper bound in P
approximately equally sized parts as in Line 3.

Therefore we utilize the following sequence which represents the approximate equal par-
titioning of the search range into n parts:

(ai) = start+
⌈
upper − lower − i

P

⌉
|i ∈ N0

Afterwards in Line 7, we asynchronously start P threads with Algorithm 2, passing each
one its query bounds for the first dimension. The main thread will then wait for all started
threads to return Line 12, and afterwards merge the results as described in Section 4.4
and return in Line 15.

27

4 Query Parallelization

Algorithm 2: Range Traversal Thread
Input: Int[] &lower, Int[] & upper, Int start, Int numElements, Atomic<Int>

&resultSize
Result: Vector<TID> result

1 Function searchMCSPThread(lower, upper, start, numElements, resultSize) {
2 Vector<TID> result;
3

4 for Int offset = start to start + numElements do
5 Int pointer = ELF[offset];
6

7 if pointer == NOT_FOUND then
8 continue;
9 else if noMonoList(pointer) then

10 SearchDimList(lower, upper, pointer, 1, result);
11 else
12 result += SearchML(lower, upper, unsetMSB(pointer), 1, result);
13 end
14 end
15

16 resultSize += result.size();
17 return result;
18 }

The threads will traverse their part of the first dimension starting from start for
numElements pointers in Line 4. Then on Lines 7, 9 and 11 each pointer is checked
whether it points to a DimensionList , MonoList or nothing at all because the first
dimension is not dense. Afterwards, for each of the values, the corresponding existing
traversal functions by Broneske et al. is called - in case of a dimension list pointer in Line
10 and for MonoLists in Line 12 - and the results of this functions is added to the result
vector. When the traversal of the queried range is done, the result size is atomically added
to the overall result size and the result vector is returned.

The major advantage despite its simplicity is the fact, that the total ordering of the result
data is kept. This can be important for further query processing.

28

4 Query Parallelization

4.2 Subtree-Parallel Traversal

A major flaw of the first implementation is that the Elf is no balanced tree since it uses
MonoLists, which compresses suffix dimensions of the inserted data. This leads to unequal
traversal times for a range traversal since this unbalance can become even more dramatic
between two thread ranges. To address this flaw in our second algorithm we do not
traverse subtree ranges, but only single subtrees. We show an example traversal in Figure
4.2.

0 1

1 2

2

1

0

0|T1 1|T3 1|T4

3

1|T2

3

2

2|T5

1

0

0 2

0|T6

Column	C1

Column	C2

Column	C3

Column	C4

Thread	2Thread	1
next_pos

Figure 4.2: First Dimension Traversal

This traversal does not partition the first dimension beforehand, but instead each of the
two threads has its start position. When a thread finishes traversing its current subtree,
it just continues traversal at the position of the next_pos cursor which points to the next
untraversed subtree. This way the traversal workload is equally distributed between all
threads.
However, this leads to unsorted results, because threads do no longer traverse the Elf
in order. Furthermore, this approach needs some kind of coordination between the
threads, which subtree to traverse next, when a thread has finished its previous traver-
sal. To ensure, that the cursor is properly changed for every thread, this cursor is an
atomic, which guarantees that as little overhead as possible is generated for synchronisa-
tion.

29

4 Query Parallelization

4.2.1 Implementation

This algorithm works similar to the one in Section 4.1, but in this version every thread
repeatedly traverses single subtrees as we show in Figure 4.2.

Algorithm 3: Subtree-Parallel Traversal
Input: Int[]] lower, Int[] upper, Int numThreads
Result: Vector<TID> result

1 Function ParallelSearchMCSP(lower, upper, numThreads) {
2 Future<Vector<TID>> threads[numThreads];
3 Atomic<Int> resultSize = 0;
4 Atomic<Int> nextIdx = lower[0];
5

6 for Int i = 0 to numThreads do
7 threads[i] = async searchMCSPThread(lower, upper, nextIdx, resultSize);
8 end
9

10 Vector<TID> intermediateResults[numThreads];
11 foreach thread ∈ threads do
12 intermediateResults += thread.get();
13 end
14

15 return merge(intermeds, resultSize);
16 }

To achieve interleaved sub-tree traversal, a global atomic variable in Line 4 gives the
next traversal position in the first dimension and is always incremented by the thread
which traverses the position pointed to by the atomic. As before we at first discuss the
algorithm responsible for the thread initialization, work coordination and result merging
in Algorithm 3 and afterwards the algorithm of the threads in Algorithm 4. The traversal
of the first dimension is this time partitioned by the threads itself by communication of the
atomic. Algorithm 3 just starts the threads in Line 7 passing each the query bounds as well
as the atomic as traversal position cursor. Afterwards it waits for all threads to finish their
work in Line 12 and returns the merged results in Line 15.

The worker threads start obtaining their traversal position by obtaining the next po-
sition from the atomic variable by atomically post-incrementing the atomic in Line 2,
which returns the value of the position before the increment. Then, in Line 7, the ac-
tual traversal starts, a loop traverses the first dimension until the upper limit is reached
in Line 3, the next position is always determined by a post-increment of the atomics’s
next position cursor in Line 15. The remaining subtree traversal is equal to the traversal
in Algorithm 2. The algorithm just calls the matching traversal function for the sub-
tree.

30

4 Query Parallelization

Algorithm 4: Subtree Traversal Thread
Input: Int[] &lower, Int[] & upper, Atomic<Int> &nextPos, Atomic<Int>

&resultSize
Result: Vector<TID> result

1 Function searchMCSPThread(lower, upper, nextPos, resultSize) {
2 position = nextPos++;
3 while position ≤ upper[0] do
4 pointer = ELF[position];
5

6 if pointer == NOT_FOUND then
7 position = nextPos++;
8 continue;
9 else if noMonoList(pointer) then

10 SearchDimList(lower, upper, poiunter, 1, result);
11 else
12 result += SearchML(lower, upper, unsetMB(offset), 1, result);
13 end
14

15 position = nextPos++;
16 end
17

18 resultSize += result.size();
19 return result;
20 }

However it is important to note that this kind of traversal is not order preserving so that
the results must be sorted if this is required in further query execution. Furthermore, the
jumps to new possibly not adjacent subtrees lead to page faults and cache misses, even
though it reduces the effects of imbalance on the traversal time.

31

4 Query Parallelization

4.3 Node-Parallel Traversal

To reduce the time penalty introduced by waiting for threads to finish the traversal
of imbalanced subtrees and furthermore remove the merge phase, our third proposed
algorithm works differently from the previous two. Instead of splitting the problem in
breadth on the first dimension we now have one main thread traversing the complete
tree and starting helper threads similar to the distributed tree traversal by Ferguson and
Korf. The helper threads then traverse their subtree DimensionList which will no longer
be traversed by the parent thread as part of his depth-first traversal. This procedure is
done recursively until P threads are busy. We show an illustration of this procedure in
Figure 4.3.

0 1

1 2

2

1

0

0|T1 1|T3 1|T4

3

1|T2

3

2

2|T5

1

0

0 2

0|T6

Column	C1

Column	C2

Column	C3

Column	C4

Thread	2Thread	1

Figure 4.3: Example Node-Parallel Traversal

In the node-parallel traversal, one main thread traverses the Elf starting from the first
dimension down to the next. If the next dimension is no MonoList and the number of
running threads is smaller than a upper bound, new threads starting to traverse the Di-
mensionList. Therefore, each of the started threads gets one subtree of the DimensionList
to traverse. This way, the workload is not only balanced between the subtrees, but also
between the different dimensions.

Once a thread finishes, it checks whether its potentially started child threads finished their
traversal as well. If this is the case, the results from the recursive threads are merged
into the result vector of the thread. Afterwards, the thread decrements a thread working
counter and returns its results to its parent thread. The counter is used to limit the number
of concurrent running threads to optimally utilize the CPU. If one thread finishes, the
thread counter is decremented, which is a signal to the next thread checking the thread
counter, that it can start more threads. This check is only done for each traversal of a
dimension list. Since the traversal of a MonoList is only a sequential read of a vector and
copying the MonoList’s data to the result array. This will not lead to any performance
benefits when parallelized due to the fact that sub-results must be merged back from the
parent thread anyway. The thread counter itself must once more be an atomic data type
to guarantee that the variable is always synchronized between all threads. Otherwise more
threads than advisable could be running and lead to an overload of the CPU reducing the
overall performance.

32

4 Query Parallelization

4.3.1 Implementation

The implementation of the third algorithm we introduce is even finer grained than the
one we presented before. Instead of traversing complete subtrees from the first dimension,
threads are started during depth first traversal of a subtree until P threads are running.
When a thread finishes its traversal, it decrements the thread counter and finishes its
corresponding future. The next traversing thread MonoList will then start a new thread
traversing the next untraversed subtree which is not a MonoList in the DimensionList
currently traversed by the creating thread. When the thread finishes backtracking to the
point where it started threads they are incrementally merged into the results. We show
the corresponding code to this algorithm in Algorithm 6.

The actual traversal interface for the node level is rather simple. As for the two previous
algorithms, all necessary variables are initialized in Lines 2 - 5. Afterwards the first dimen-
sion of the Elf is traversed in the range given by the query in Line 7. If a subtree exists for
the value, it is either a MonoList, or a DimensionList. In the case of a MonoList, the corre-
sponding traversal function is called in Line 13, which serially traverses the MonoList. In
the case of a DimensionList , the node-parallel traversal function is called in Line 12 and
the subtree traversal starts. If no subtree to the search values exists, or the traversal of the
subtree is finished, the traversal continues from the next position until the search range is
fully traversed. Finally, the traversal function waits for running child threads until they
finish in Line 17, merge their result into the overall result in Line 18 and returns in Line 21.
Algorithm 5: Node-Parallel Traversal
Input: Int[] lower, Int[] upper, Int numThreads
Result: Vector<TID> result

1 Function searchMCSP(lower, upper, numThreads) {
2 Atomic<Int> runningThreads = 0;
3 List<Future<Vector<Int>>> children;
4 Vector<Int> result;
5 ThreadId parentId = thisThread::getId();
6

7 for Int offset = lower[0] to upper[0] do
8 Int pointer = ELF[offset];
9

10 if pointer == NOT_FOUND then
11 continue;
12 else if noMonoList(pointer) then
13 SearchDimListParallel(lower, upper, pointer, 1, runningThreads, children,

parentId, result);
14 result += SearchML(lower, upper, unsetMSB(pointer), 1, result);
15 end
16

17 foreach child ∈ children do
18 result += child.get();
19 end
20

21 return result;
22 }

33

4 Query Parallelization

The DimensionList parallel traversal starts traversing one entry after another in Line 3 un-
til the complete DimensionList is traversed. For each entry in the list, its value is checked
in Line 4, whether it lies in the query range. If this is not the case, the position is incre-
mented to its next value in Line 17 and checked, whether the current value is lower than
the upper query bound in Line 18. If the upper bound is reached, all threads are queried
whether they have finished their execution and the sub-results from all finished threads
are merged to the complete result and returned in Line 20.

Otherwise the next value of the dimension list is traversed. If the value contains a pointer
to a DimensionList, the number of runningThreads is incremented atomically in Line 7
and afterwards tested whether the maximum number of threads is reached. If the limit
was reached, runningThreads is decremented in Line 8 and the function calls itself re-
cursively with the new DimensionList in Line 9. If the number of running threads was
smaller or equal to the number of runningThreads, the node parallel traversal func-
tion is started in a new thread and the thread is added to the child thread list in Line
11.

If the subtree pointer points to a MonoList, the MonoList is traversed and its results
are merged in Line 14. After all values in the DimensionList are traversed, all remaining
child threads in the child thread list are queried whether their results are ready to retrieve
in Line 26. If the thread result is ready, the result is merged to the result of the parent
thread in Line 27 and the thread removed from the child thread list in Line 28. Before the
function terminates, it checks whether it was started as a new thread or was recursively
called by checking if the own thread ID is equal to the parentId in Line 31. If this is not
the case, the function was started in a new thread and decrements the runningThreads
counter before the function returns its result in Line 34.

34

4 Query Parallelization

Algorithm 6: DimensionList Parallel Traversal
Input: Int dimension, Int listStart, Vector<Int> &result, Int[] lower, Int[] upper,

Atomic<Int> &runningThreads, List<Future<Vector<TID>>> &children,
Int parentId

Result: Vector<TID> result
1 Function SearchDimListParallel(lower, upper, listStart, dimension,

runningThreads, children, parentId, result) {
2 Int toCompare = ELF::getValue(listStart);
3 while notEndOfList(toCompare) do
4 if isIn(lower[dimension], upper[dimension], toCompare) then
5 pointer = ELF[++listStart];
6 if noMonoList(pointer) then
7 if ++runningThreads > numThreads then
8 −−runningThreads;
9 SearchDimListParallel(dimension + 1, pointer, result, query,

runningThreads, children, parentId);
10 else
11 children += async SearchDimListParallel(lower, upper, poniter,

dimension + 1, runningThreads, new
List<Future<Vector<TID>>>, parentId, new Vector<TID>));

12 end
13 else
14 result += SearchML(lower, upper, unsetMSB(pointer), dimension + 1,

result);
15 end
16 end
17 position += 2;
18 if upper[dimension] < toCompare then

/* merge thread results and remove futures from list as in
Lines 25 and following */

19 ...
20 return result;
21 end
22 toCompare = ELF::getValue(position);
23 end
24

25 foreach elem ∈ children do
26 if elem.ready() then
27 result += elem.get();
28 children -= elem;
29 end
30 end
31 if thisThread::getId() 6= parentId then
32 −−runningThreads;
33 end
34 return result;
35 }

35

4 Query Parallelization

This approach has the advantage, that it uses a more fine grained parallel approach
to maximise the parallel work. The work is distributed as evenly as possible, lead-
ing to almost no waiting situations. Furthermore the merging is not done in an extra
step, but during traversal and in parallel, eliminating an extra merge step with addi-
tional overhead. However it introduces some inter-thread communication, which can be
costly.

4.4 Result Merging Strategies

For the result merging step of our algorithm we need to merge all P result arrays to one
array. For this task exist three following options.

The simplest option is the Serial Merge in Section 4.4.1, which inserts the results serially
into the final result array. While this approach may be very simple it does not fully utilize
the available memory bandwidth and effectively turns out as bottleneck for the algorithm
since merging is easily parallelizable. Therefore we implement a Hybrid Merge in Section
4.4.2, which merges the results in parallel.

To parallelize the merge step, the start positions of the partial results in the final result
vector must be known. Otherwise data may be overwritten or the result array will not be
dense. To determine the results we use a prefix summation [Hillis & Steele, 1986]. This
operation adds subsequentially the result sizes of the partial results, leading to a list of
partial sums. These partial sums are the start positions of the result data partition in the
final results (cf. Serial Merge in Section 4.4.1).

The prefix sum operation itself can be implemented work-efficient in parallel [Ladner &
Fischer, 1980], but since P and thus our array to prefix sum is expected to be rather small
for our workloads, we do not expect it to payout [Nguyen, 2007]. Nevertheless we include
the Parallel Merge variant for completeness reasons in Section 4.4.3.

The trade-off between the two versions previously introduced is a partially parallel merge,
which computes the prefix sum serially and afterwards starts P threads to copy the inter-
mediate results. This should lead to a big performance benefit, since multiple threads are
writing in parallel to disjunct memory regions, which usually leads to a higher bandwidth
and transfer rate.

In the following we will provide and explain algorithms of all three approaches.

4.4.1 Serial Merge

As previously mentioned, the serial merge is the simplest merge version, which just re-
serves a Vector of TIDs preallocated with the number of elements after the merge in Line
2. Afterwards it just iterates over the array of sub-results and adds the values to the
result array in Line 5. When this step has succeeded the merge is finished and the results
are returned in Line 7.

36

4 Query Parallelization

Algorithm 7: Serial Merge
Input: Vector<TID>[] intermediateResults, Int resultSize
Result: Vector<TID> result

1 Function merge(intermediateResults, resultSize) {
2 Vector<TID>result(resultSize);
3

4 foreach elem ∈ intermediateResults do
5 result += elem;
6 end
7 return result;
8 }

4.4.2 Hybrid Merge

For a parallel merging phase, either the result data structure must have a thread safe
way to randomly insert data, or the result size as well as the insert positions must be
known in advance to have no overlapping writes at merge time. Since, to the best
of our knowledge, no good performing concurrent data structure with random posi-
tion insert exists, we determine the insert position in advance through prefix summa-
tion.

Algorithm 8: Hybrid Merge
Input: Vector<TID> intermediateResults, Int resultSize
Result: Vector<TID> result

1 Function merge(intermediateResults, resultSize) {
2 Vector<TID>result(resultSize);
3 Int prefixes[intermediateResults.size()];
4 prefixes[0] = 0;
5

6 for Int i = 1 to intermediateResults.size() do
7 prefixes[i] = prefixes[i-1];
8 end
9

10 for Int i = 0 to intermediateResults.size() pardo
11 for Int idx = 0 to intermediateResults[i].size() do
12 result[prefixes[i] + idx] = intermediateResults[i][idx];
13 end
14 end
15 return result;
16 }

The prefix summation is done by traversing the input data in Line 6, which have to be
merged and add their sizes successively, writing every partial sum in an array in Line 7.
The insert positions for the data now correspond to the prefix sums in the array. In the
next step, P threads are started, passing each one the prefix sum of the corresponding
merge data as well as the result vector in Line 10. Each thread now inserts its data,

37

4 Query Parallelization

starting from its prefix sum as insert position in the result vector in Line 12. Afterwards
the merge is finished and the result is returned in Line 15.

4.4.3 Parallel Merge

The full parallel merge variant merges the data as in the partially parallel Algorithm 8,
but instead of calculating the prefix sum serially, it is also parallelized; in our example on
Lines 4-13 with Horn’s Algorithm [Horn, 2005].

Algorithm 9: Parallel Merge
Input: Vector<TID> intermediateResults, Int resultSize
Result: Vector<TID> result

1 Function merge(intermediateResults, resultSize) {
2 Vector<TID>result(resultSize);
3 Int prefixes[intermediateResults.size()];
4

5 for Int i = 1 to log2(intermediateResults.size()) do
6 for Int k = 0 to intermediateResults.size() pardo
7 if k ≥ 2i then
8 prefixes[k] = prefixes[k-2i] + prefixes[k];
9 else

10 prefixes[k] = prefixes[k];
11 end
12 end
13 end
14

15 for Int i = 0 to intermediateResults.size() pardo
16 for Int idx = 0 to intermediateResults[i].size() do
17 result[prefixes[i] + idx] = intermediateResults[i][idx];
18 end
19 end
20

21 return result;
22 }

To calculate the prefix sum in parallel, the algorithms iterates binary logarithmic in times
depending on the size of the array to calculate the full prefix sum as shown in Line 5. In
each of the iterations, the algorithm calculates in parallel the sum of two elements which
are 2i elements interleaved as in Line 10. This means, in the first iteration all neighbouring
elements are summarized, in the second every fourth element and so on. By this scheme
subsequentially all elements are summed up with all preceding elements. Afterwards we
just merge the results as previously in Algorithm 8.

38

4 Query Parallelization

4.5 Linearisability

We introduced our parallel query algorithm for the read-optimized Elf, which does not
allow other operations than querying. This effectively reduces the proof of linearisability
to the question whether any operation modifies the Elf during traversal. Since this is not
the case for any of our introduced algorithms, we do not need to consider any ordering
of operations, since all operations occur always on the same data. Therefore, our query
algorithms for the read-only Elf are linearisable.

This is different on the write-optimized Elf, since this data structure allows insertions.
Thus we need to consider two operations and it turns out, that on the write-optimized
Elf none of our introduced algorithms is linearisable.

39

5 Insert Parallelization

In the previous section, we described three different parallel search algorithms for the read-
optimized Elf, which can easily be adapted for the write-optimized Elf. In this section we
introduce three different algorithms to parallelize the insertion into the write-optimized
Elf. Therefore we will first introduce a parallelized blocking version of the algorithm as
reference implementation, followed by two non-blocking versions featuring state-of-the-art
techniques to overcome the disadvantages of the blocking algorithm.

5.1 Blocking Parallel Insertion

Our blocking concurrent insert is based on the original insertion algorithm of the Elf
with some minor changes regarding protection from data races. In the original version of
the Elf by [Broneske et al., 2017], a node of the Elf is represented as an array with the
respective values of the dimension, respectively the TIDs of the rows having the values of
the path. To insert values into the Elf, the Elf is traversed until a value is not found in
the Nodes array. When this is the case, the missing value is inserted and a subtree with
the values to insert from there is created.

In a parallel environment, it may occur that two values must be inserted in the same
array. This insertion can lead to a data race because the data are inserted at the same
position, or the array must be resized. Both are actions that are inherently not atomic
and thus can lead to inconsistencies. To prevent those situations, we associate each Node
array with a mutex, which protects the array from concurrent writes which would lead
to a data race. Even though a simple mutex would be enough to prevent data races,
this approach is not very efficient since read operations are also blocking the entire array
even though they have no influence on correctness of the Elf. Furthermore, our critical
section is rather large and the locks are potentially hold for a rather long time period,
since the complete non-existing subtree is generated and inserted. This can lead to the
situation that multiple threads wait for a long time until the lock is released and they can
continue.

For both problems we provide the following solutions for our locking insertion algorithm:
To eliminate exclusive locking on read access, we use RW-mutexes instead of normal
mutexes. Shared mutexes can be locked in two ways. One way is exclusive access to
the protected resource, which blocks every further locking of the mutex and thus makes
writes to the resource free of data races. The other way is RW-mutex, which prevents
acquiring locks for reads and allows concurrent reads while blocking modifications at the
same time. This kind of mutex can greatly reduce the amount of exclusive locking and
thus increase parallelizability and throughput.

40

5 Insert Parallelization

For our second problem, we use a finer grained locking scheme. Instead of locking a
Node only once and insert a complete subtree, we just insert single nodes during traver-
sal. This ensures smaller locking periods and thus ensures more throughput. In the
following, we introduce the structural changes we made on the node structure as well
as the complete insertion algorithm together with our fine grained locking scheme and
RW-mutexes.

5.1.1 Node Structure

The serial Insert Elf nodes by [Broneske et al., 2017] use for every node, inner- as well
as leaf node the same structure; an array of Integral data types which can be interpreted
as regular DimensionList or Leaf Node, which only contains a list of TIDs, depending
on the node type. To improve the maintainability and guarantee consistent concurrency,
we define the abstract parent class LKElfNode for inner nodes as well as leaf nodes and
specialize both types for their specific needs. We replaced the integer array of the inner
node (LKLeafNode) with a Vector of key-pointer pairs. This guarantees a correct order-
ing on concurrent insertion of multiple key-pointer pairs while giving the flexibility of
inserting keys and pointers separated from each other in different but concurrent steps.
Furthermore, this restructuring improves maintainability by structuring keys and pointers
without introducing an overhead. This is due to the definition of a Pair, which is just
a container for in this case key and pointer data with no own space requirements. In
addition to the change of the entry representation, we store the previously mentioned,
corresponding mutex for entries in the node.

To make the node functionalities more independent from its implementation and simplify
the implementation of the insertion and traversal algorithms, we identify a small but
sufficient set of functionalities required to insert and traverse inner nodes. We add this set
of functionalities in form of member functions to the node, from which some ensure, that
all access to the node’s data are data race free, and others allow manual locking control
without modification. Our set of functionalities includes:

LKElfNode

LKInnerElfNode
-	entries	:	Vector<Pair<Int,	LKElfNodePtr>>
-	lock	:	shared_mutex

+	writeLock()	:	void
+	writeUnlock()	:	void
+	find(key	:	Int)	:	LKElfNodePtr
+	findRange(start	:	Int,	end	:	Int)	:	Vector<LKElfNodePtr>
+	insert(key	:	Int,	node	:	LKElfNodePtr)	:	void
+	unsafeInsert(key	:	Int,	node	:	LKElfNodePtr)	:	void

LKLeafElfNode
-	entries	:	Vector<TID>
-	lock	:	shared_mutex

+	writeLock()	:	void
+	writeUnlock()	:	void
+	getValues()	:	Vector<Int>
+	insert(tid	:	TID)	:	void
+	unsafeInsert(tid	:	TID)	:	void

Figure 5.1: Locking Elf Nodes

find(key : Int) This function fulfils the need to query single values for exact match
queries. Therefore, it takes a key and returns a pointer to the corresponding LKElfN-
ode if the key exists. Otherwise it returns a nil. Since the operation accesses the
entries vector only reading, this operation needs to lock the data only with a
non-acquiring lock to ensure the correctness of the query results.

41

5 Insert Parallelization

rangeFind(start : Int, end : Int) is the pendant for our first find function for range
queries. This function does not only return a single LKElfNode, but instead a
Vector of LKElfNodes whose corresponding keys lie in the search range. Since this
operation is also read only, a non-acquiring lock is sufficient.

insert(key : Int, node : LKElfNodePtr) This operation allows safe insertion of a key-
pointer pair into the node. Therefore, move operations may be necessary to insert
the new data in the sorted Vector. Since this is a write operation, the entries are
locked for exclusive access and afterwards released.

unsafeInsert(key : Int, node : LKElfNodePtr) The pendant to the insert operation,
but potentially unsafe, since no locking takes place and synchronisation must be
handled from outside by the following writeLock() and writeUnlock() functions.
However this allows more control over the locking granularity.

writeLock() This function obtains the acquiring lock of the node to make exclusive mod-
ifications from outside of the node possible without using the provided functionality
while protecting the entries from concurrent modification.

writeUnlock() This function releases a previously acquired lock via writeLock on the
node’s data.

For the LKLeafElfNode the find functions are not needed, because leaf nodes hold only
TIDs which match with the columns that build the path from the Elf root to the leaf.
Thus also key-pointer pairs are not needed, only a vector of TIDs with a getter for the
vector, which obtains a lock when copying the vector. Furthermore the insert functions
are adapted to append new TIDs to the end of the vector and if needed to lock the node
during this operation. Now that we introduced the Elf node structure and its functions,
we can introduce the locking insertion algorithm.

5.1.2 Implementation

Our insert algorithm takes the TID to insert together with its dimension values. To
locate the insert position, the traversal starts from the root node in Line 2, querying
each subsequent node on the path in Line 7 until the last dimension is reached in Line
6, or no corresponding value in the dimension is found in Line 11. During each call of
the find function, the nodes traversed by the function are locked one by one. When
no value is found in the dimension, we construct a new LKInnerElfNode in Line 12
manually write locking its internal structures in Line 13 to protect the new empty node
from concurrent modifications from other nodes. Afterwards we try to insert the newly
constructed node pointer with its corresponding key into the Elf in Line 14. If this step is
not successful, in the meantime another concurrent insertion could have inserted a node
with the same key. In this case, the newly created node is unlocked and destructed in
Line 18.

If this step succeeded, which is the case when no other concurrent insert operation suc-
cessfully inserted a node with the same key in the meantime, then an insertion flag is
set in Line 16. This signals that a new inner node was inserted and must be unlocked
later. The traversal now continues in Line 25 with subsequent insertions in the newly
generated subtree by constructing new nodes in Line 26, inserting them in the locked

42

5 Insert Parallelization

node inserted previously in Line 28, unblock the previous node in Line 29 and change the
node to traverse to the new node in Line 30.

43

5 Insert Parallelization

Algorithm 10: Locking Parallel Insertion
Input: Int[] toInsert, TID tid

1 Function insert(toInsert, tid) {
2 LKElfNodePtr currentNode = root;
3 Bool newInserted = false;
4 Int dim = 0;
5

6 while dim < NUM_DIM do
// locks nodes traversed with non-acquiring lock during serach

7 LKElfNodePtr ptr = currentNode->find(toInsert[dim]);
8 if ptr 6= nil then
9 currentNode = ptr;

10 ++dim;
11 else
12 LKElfNodePtr newNode = new LKInnerElfNode;
13 newNode->writeLock();
14 if currentNode->insert(toInsert[dim++], newNode) then
15 currentNode = newNode;
16 newInserted = true;
17 break;
18 else
19 newNode->writeUnlock();
20 delete newNode;
21 end
22 end
23 end
24

25 while dim < NUM_DIM - 1 do
26 LKElfNodePtr newNode = new LKInnerElfNode;
27 newNode->writeLock();
28 currentNode->unsafeInsert(toInsert[dim++], newNode);
29 currentNode->writeUnlock();
30 currentNode = newNode;
31 end
32

33 if newInserted then
34 LKElfNodePtr newNode = new LKLeafElfNode;
35 newNode->writeLock();
36 currentNode->unsafeInsert(toInsert[dim++], newNode);
37 currentNode->writeUnlock();
38 currentNode = newNode;
39 currentNode->unsafeInsert(tid);
40 currentNode->writeUnlock();
41 else
42 currentNode->insert(tid);
43 end
44 }

44

5 Insert Parallelization

This scheme guarantees, that concurrent traversals or insertions in the same node are
blocked and wait until the node contains data. Furthermore this reduces the lock times
since only single nodes are inserted and not a full subtree. This also enables concurrent
operations to work with partially inserted subtrees. When all inner nodes up to the last
dimension are inserted or traversed, we check the insertion flag in Line 33 whether we
inserted new nodes. If this is the case, we also need to construct and insert a new leaf
node in Line 36. Then insert the TID and unlock the leaf node. Otherwise, if we have not
inserted any inner nodes, we can just insert the new TID, using the safe insert function
of the leaf in Line 42.

5.2 Non-Blocking Parallel Insertion

In our blocking reference implementation we have not greatly altered the structure of an
Elf node. This leads to the limitation that concurrent insertion per node is limited to one
at a time, because the only way to guarantee correctness of the node’s content is to lock
the complete array. To overcome this limitation, the data structure holding the node’s
data must be changed.

Inner Node Adaptions
Alternative data structures suited for concurrent insertions are either a concurrent array
implementation as previously introduced, or completely different data structures such
as trees, linked lists or hash maps. However, hash maps are not well suited for range
searches since the data are unordered and concurrent arrays are too slow for in-order
insertion in an sorted array. This is, to the best of our knowledge, due to the fact that
random position insertion in a concurrent vector has much larger overhead compared
to serial insertion in all existing implementations [Feldman et al., 2016], [Dechev et al.,
2006].

The remaining variants are linked lists and trees, which are especially well suited for our
use case because they are linked data structures, which have generally very good random
position insertion complexity. A tree has logarithmic traversal complexity in case of bal-
anced search trees while having no space overhead against linked lists, making it superior
to the list. The disadvantage of trees is, that they need rebalancing which introduces
some overhead at insertion or traversal time. As a trade-off between the simplicity of
linked lists and the performance of trees we choose a skip list as data structure with the
actual column data as key and a pointer to the next node as value for our Dimension-
List data. This data structure is furthermore well suited as concurrent data structure
while being well studied for parallelization [Fraser, 2004], [Kardaras, Siakavaras, Nikas,
Goumas, & Koziris, 2018], [Sprenger, Zeuch, & Leser, 2017]. As random distribution
probability for the geometric distribution of fast lanes, we decided to use a probability
of p = 0.5, since with this probability provides the best balance of fast lanes on average
[Pugh, 1990]. Furthermore, we choose a fixed size array to store the fast lane data for a
simpler node structure and expected better performance [Sprenger et al., 2017]. As size
of the fast lane array we choose twelve pointers. At this size we are able to balance up to
212 entries.

45

5 Insert Parallelization

Unfortunately no lock-free, or transactional range search operations for our chosen skip
lists exist, to the best of our knowledge. However, they are rather straight forward to
implement and thus we will introduce our modifications of the provided search algorithm
to support range queries in the following sections.

Leaf Node Adaptions
While the skip list suits well as a structure for the inner nodes, due to their ordering and
simple random insertion, this criteria are not important for leaf nodes. The TID data in a
leaf node are usually unsorted, data can be always appended and need no ordering during
insertion. This leads us to the decision to use the concurrent_vector as data structure
for the leaf nodes. This continuous data structure, gives us optimal performance when
fetching TIDs. Since usually all TIDs in a node are fetched, an array is the best performing
data structure for those kind of tasks.

Flags for State Indication
For a non-blocking implementation there is furthermore the need to adapt the insertion
algorithm. We adapt the reference implementation by introducing a flag on every pointer
to an Elf node. This flag signals whether a node is either inserted but uninitialized or
ready for traversal. The flag only needs one bit memory for signalling and thus can easily
be stored in the least significant bit on architectures aligning their pointer to at least
a 16-bit boundary, which is practically the case on any modern architecture. With this
modifications we are able to introduce the modifications of the non-blocking skip lists,
following the structures of the transactional and the lock-free Insert Elf nodes and finally
the implementation of the insertion algorithm.

5.2.1 Range Find for Transactional Skip List

For our implementation of a range search (cf. Algorithm 11) for the transactional skip list
by Kardaras et al., we adapted the search algorithm for single value search. The idea is
to search in the skip list to the value which is the closest one to the lower bound possible.
Afterwards we traverse and collect all values from this point until the upper bound or the
end of the skip list is reached.

46

5 Insert Parallelization

Algorithm 11: Transactional Skip List Range Search
Input: Int lowerBound, Int upperBound
Output: Vector<ElfNodePtr> result

1 Function find(lowerBound, upperBound) {
2 Vector<ElfNodePtr> result;
3 SkipListNode curr, pred;
4 pred = head;
5

6 for Int h = MAX_LEVEL to 0 do
7 curr = pred.next[h];
8 while lowerBound > curr.key do
9 pred = curr;

10 curr = pred.next[h];
11 end
12 end
13

14 while curr.key ≤ upperBound do
15 while curr.state == INITIAL do
16 ;
17 end
18 if curr.state 6= DELETED then
19 result += curr.value;
20 end
21 end
22 return result;
23 }

To determine the start position of the queried range in the list, we use the part of the
find implementation to traverse to the point where the first value in the search range lies.
Thus we start at the head of the list in Line 4 and traverse down to the last dimension
from Line 6 to 12. When the last dimension is reached, the current node is the first node
within the search range or a node past the upperBound in case no value within the search
range was found.

Now all values in the linked list that are smaller than upperBound are traversed in Line
14. For each of the values its state is tested. If the state is INITIAL, the insertion of the
value is not completed yet and the traversal waits for completion in Line 15. Afterwards,
if the value is not marked as DELETED, the value is added to the results in Line 19.
When all values in the search range are traversed, the function returns the result values
in Line 22.

5.2.2 Range Find for Lock-Free Skip List

The lock-free skip list must be adapted in a similar manner as the transactional skip list.
Fortunately, for the initial search for the beginning of the search ranges a list_search
function from the reference implementation by Fraser already exists. Therefore, the
range query algorithm is slightly simpler, even though in this algorithm we need to

47

5 Insert Parallelization

deal with atomics and a different syntax for manipulation of flags. In this algorithm
we utilize the flag manipulation functions introduced by Fraser et al. Furthermore, flags
are only used to signal deletion, since new values are always fully initialized when in-
serted.

The Algorithm 12 itself is despite the adaptions mentioned earlier the same for the lock-
free skip list, i.e., the same as in Algorithm 11.

Algorithm 12: Lock-Free Skip List Range Search
Input: Int lowerBound, Int upperBound
Output: Vector<ElfNodePtr> result

1 Function find(lowerBound, upperBound) {
2 Vector<ElfNodePtr> result;
3 SkipListNode *curr = list_search(lowerBound).second[0];
4

5 while curr->key ≤ upperBound do
6 if is_marked(curr) then
7 curr = unmark(curr)->next[0].load();
8 continue;
9 end

10 result += curr.value;
11 curr = curr->next[0].load();
12 end
13

14 return result;
15 }

The algorithm starts by initializing the cursor with the lowest value of the skip list,
which is enclosed in the search range. If no such value exists, the lowest element, that
is higher than upperBound is returned in Line 3. In the next step, all values in the
skip list that match the search range from the start element onwards are subsequentially
traversed in Line 5. If the node currently in traversal is marked as deleted, the flag is
removed from the tagged pointer to obtain the real pointer and the pointer to the next
element is fetched atomically in Line 7. In this way, the marked pointer is ignored and
the traversal is continued. If an element is not marked as deleted, its value is added to
the results in Line 10 and the next element is loaded in Line 11. When all elements in
the search range are traversed, the traversal ends and returns the result Vector in Line
14.

5.2.3 Transactional Node Structure

The node structure for the transactional Elf, which we show in Figure 5.2, is, despite the
same class hierarchy and some common node functions, highly different from the structure
of the first introduced blocking Elf nodes. In the TMInnerElfNode, we replaced the vector
of pairs by a transactional key-pointer skip list which does not need a mutex. Hence, the
mutex is omitted from the TMElfNodes. This leads to the fact, that no unsafe and manual
locking functions are included. In exchange we add new functions which manipulate or
prompt the state of the node. There are two possible states, INITIAL and INSERT which

48

5 Insert Parallelization

can be mapped to a single indicating flag. To represent this flag, we utilize the least
significant bit (LSB) from the pointer to the skip list. This is possible, since on modern
architectures all data types are aligned to their respective size boundary for performance
reasons.

TMElfNode

TMInnerElfNode
-	elems	:	TMSkipList<Int,	TMElfNodePtr>	*

-	getValue()	:	TMSkipList<Int,	TMElfNodePtr>	*
+	getState()	:	Status
+	setState(state	:	Status)	:	void
+	resetState(state	:	Status)	:	void
+	find(key	:	Int)	:	TMElfNodePtr
+	findRange(start	:	Int,	end	:	Int)	:	Vector<TMElfNodePtr>
+	insert(key	:	Int,	node	:	TMElfNodePtr)	:	Bool

TMLeafElfNode
-	elems	:	TID	*

-	getValue()	:	TID	*
+	getState()	:	Status
+	setState(state	:	Status)	:	void
+	resetState(state	:	Statue)	:	void
+	getValues()	:	Vector<TID>
+	insert(TID	tid)	:	void

Figure 5.2: Transactional Elf Nodes

For the TMLeafNode we replaced the vector with an own resizeable array, which we
represent as a plain memory area of type TID. Allocations and freeing of plain memory is
always possible as memory transactions, thus we need no special data structure and just
include the resizing of the array in the insert function. In the following we introduce the
previously mentioned and further member functions:

getValue() This function removes the state flag from the pointer to restore the original
location of the skip list. This operation is used in all find and insert operations to
guarantee modifications to occur in correct memory locations.

getState() This operation reads the LSB from the pointer to the skip list and interprets
its state.

setState(state : Status) sets the LSB to the state passed as parameter.

resetState(state : Status) resets the state passed as parameter.

find(key : Int) As in the LKInnerElfNode this function is needed for exact match queries,
but this time does not use a linear search on the vector. It calls the traversal function
of the transactional skip list and returns either the corresponding TMElfNodePtr to
the key or a nil when the key does not exist in the TMInnerElfNode.

findRange(start : Int, end : Int) This function acts as a wrapper to the skip lists findRange
call. First it recovers the pointer to the skip list and then returns the skip lists range
search results.

insert(key : Int, node : TMElfNodePtr) This function recovers the skip list pointer
and forwards the insertion parameters to the skip list’s insert function.

49

5 Insert Parallelization

5.2.4 Lock-Free Node Structure

As previously mentioned, we use the lock-free skip list by Fraser to store the dimension
data for LFInnerElfNodes 5.3. Furthermore, we utilize the concurrent_vector to store
the TID data in the LFLeafElfNode 5.3. With this modification we are able to implement
the node’s member functions in a lock-free way. Since the algorithm for insertion in the
lock-free Elf also makes use of node states, this functionality is implemented in the same
way as in the transactional Elf.

LFElfNode

LFInnerElfNode
-	elems	:	LFSkipList<Int,	LFElfNodePtr>	*

-	getValue()	:	LFSkipList<Int,	LFElfNodePtr>	*
+	getState()	:	Status
+	setState(state	:	Status)	:	void
+	resetState(state	:	Status)	:	void
+	find(key	:	Int)	:	LFElfNodePtr
+	findRange(start	:	Int,	end	:	Int)	:	Vector<LFElfNodePtr>
+	insert(key	:	Int,	node	:	LFElfNodePtr)	:	Bool

LFLeafElfNode
-	elems	:	concurrent_vector<TID>	*

-	getValue()	:	concurrent_vector<TID>	*
+	getState()	:	Status
+	setState(state	:	Status)	:	void
+	resetState(state	:	Statue)	:	void
+	getValues()	:	Vector<TID>
+	insert(TID	tid)	:	void

Figure 5.3: Lock-Free Elf Nodes

getValue() This function removes the state flag from the pointer to restore the original
location of the skip list. This operation is used in all find and insert operations to
guarantee modifications to occur in correct memory locations.

getState() This operation reads the LSB from the pointer to the skip list and interprets
its state.

setState(state : Status) sets the LSB of the elems pointer to the state passed as pa-
rameter.

resetState(state : Status) resets the entry-pointers LSB according to the state passed
as parameter.

find(key : Int) As in the previous two node implementations, this function is provided
for the exact match query algorithm.

findRange(start : Int, end : Int) This function acts as a wrapper to the skip list findRange
call. First it recovers the pointer to the skip list and then returns the skip lists range
search results as a vector of LFElfNodePtr.

insert(key : Int, node : LFElfNodePtr) This functions recovers the skip list pointer
and forwards the insertion parameters to the skip lists lock-free insert function.

50

5 Insert Parallelization

5.2.5 Implementation

Similar to the locking insertion algorithm, we start our non-blocking parallel insertion
algorithm, Algorithm 13, by traversing the Elf from the root node in Line 2 until the tree
is traversed to the last dimensional node in Line 3.

Algorithm 13: Non-Blocking Parallel Insertion
Input: Int[] toInsert, TID tid

1 Function insert(toInsert, tid) {
2 ElfNodePtr currentNode = root;
3 for Int dim = 0 to NUM_DIM - 1 do
4 RETRY:
5 ElfNodePtr pos = currentNode->find(toInsert[dim]);
6 if pos 6= nil then
7 currentNode = pos;
8 else
9 ElfNodePtr newNode = new InnerElfNode;

10 newNode->setState(INITIAL);
11 Bool success = currentNode->insert(toInsert[dim], newNode);
12 if ¬ success then
13 delete newNode;
14 goto RETRY;
15 end
16 currentNode->resetState(INITIAL);
17 currentNode = newNode;
18 end
19 end
20 while true do
21 ElfNodePtr pos = currentNode->find(toInsert[NUM_DIM - 1]);
22 if pos 6= nil then
23 pos->insert(TID);
24 pos->resetState(INITIAL);
25 return;
26 else
27 ElfNodePtr newNode = new LeafElfNode;
28 newNode->setState(INITIAL);
29 Bool success = currentNode->insert(toInsert[NUM_DIM - 1], newNode);
30 if ¬ success then
31 delete newNode;
32 continue;
33 end
34 currentNode->resetState(INITIAL);
35 newNode->insert(tid);
36 newNode->resetState(INITIAL);
37 return;
38 end
39 end
40 }

51

5 Insert Parallelization

It is possible that during the traversal of inner nodes, the subtree in which data should be
inserted does not exist (cf. Line 6). In this case, a new inner node for the corresponding
key is created in Line 9 and its state is marked as INITIAL in Line 10. Then we insert the
node on a best effort basis in Line 11. If now a node with the corresponding key exists,
a concurrent operation inserted the subtree node in the meantime. If this is the case, the
newly generated node is destroyed in Line 13 and the traversal of the dimension is redone
in Line 14. Otherwise, the state of the node in which was inserted is reset to default in
Line 16.

Since the currentNode could have already been inserted in a previous iteration, the node
could now be in an INITIAL state, signalling concurrent queries to wait until the initiali-
sation is finished. In the case that the node was not newly created, these instructions have
no influence. After the modification, traversal continues and missing nodes are inserted
as described beforehand. Then the traversal finishes and the child node from the current
node, being the last dimensional node is queried for the leaf node in Line 21. If the leaf
node exists, the TID is inserted into the node in Line 23 and the state of the leaf node is
reset in Line 24 due to the concurrent nature of the algorithm, which allows the insertion
of a new uninitialized node in the meantime. When the node status is reset, the traversal
is finished and the function returns in Line 25.

In the case, that no leaf node with the searched key exists, a new leaf node is instan-
tiated in Line 27 and its state is set accordingly in Line 28. Now we attempt to insert
the newly created node with its corresponding key in Line 29. If this fails, in the mean-
time another node with the same key has already been inserted. In this case the newly
generated node is deleted in Line 31 and the last dimension traversal is redone in Line
32. Otherwise, the insertion was successful and the state of the inner node is reset in
Line 36. Afterwards the TID is inserted into the leaf node in Line 35 and the leaf nodes
status is reset in Line 36. This finishes the insertion and the algorithm returns in Line
37.

5.3 Linearisability

For the proof of linearisability we need to show, that all possible operation histories are
linearisable. This essentially gives us three possible cases:

Query operations only In this case it is easily observable, that this is equivalent to the
previously proven read-optimized Elf case, thus concurrent queries are linearisable.

Insert operations only For this case it is a little more complex to show its linearisability.
To do so, we set the linearisation point of a successful insert to the insertion of the
TID in the leaf node. This is linearisable, since nodes are marked as INITIAL as
long as the insertion is about to be done. This linearises all other insert operations
on the same new subtree behind the first insert operation. For insert operations
on different subtrees, operations are simply ordered by termination order, which is
linearisable, since until the successful return no other operation made changes on the
same subtree as well as different subtrees. For failed insertion the linearisation point
is the successful search of the TID in the leaf node, since the leaf node structure
holding the TIDs is itself linearisable, it is guaranteed, that the complete operation
is linearisable.

52

5 Insert Parallelization

Concurrent insertion and queries In this case queries and insertions can be intermixed
arbitrarily, but the linearisability criterium remains true anyway. Unfortunately this
is not the case for our implementations. A simple counter sample is the sequence of
operations in Figure 5.4, which run concurrently.

Query	T1,T2 {T2}

Query	T1 Insert	T1 {T1}

Thread	1

Thread	2

Figure 5.4: Non-Linearisable History

At first, thread 1 queries for tuple T1 and T2 as range query, during this query an
insert operation in thread 2 is started, which inserts T1. When the insertion has
finished, the thread queries for the previously inserted value. With this constellation
of operations it is possible, that the data are inserted into an already traversed
subtree by the first query. Now, that the insertion finished and the query results
do not contain the newly inserted tuple, the insert operation must be ordered after
the query operation. When this is the case our second query operation can still find
the newly inserted data and finishes next. Since the first query must be ordered
before the insert operation but in the meantime another query already returned the
inserted data, this leads to inconsistencies in the observed results and thus breaks
the linearisability.

Even though our introduced algorithms are not linearisable, there exist some approaches
to linearise range queries on the nodes data structures as well as overall linearisation
approaches which can possibly be ported to the Elf [Chatterjee, 2017], [Brown & Avni,
2012]. However, due to the limited time and scope of this thesis, we leave this adaptions
for future work.

53

6 Evaluation

In this chapter we will evaluate our parallel query, as well as concurrent insertion and
merge algorithms from an empirical perspective. For the empirical aspect, we conduct
the following two kinds of experiments.

Selected Queries

The first one is our micro-benchmark, with which we will determine the scaling behaviour
of the different query and merging algorithms with growing concurrency.

For our second aspect we use the TPC-H benchmark queries [Council, 2014] to analyse
how our algorithms behave in a real world scenario. In this benchmark, we are interested
in the speed-up of query times with growing concurrency, as well as the break-even point of
query times against the implementation of [Broneske et al., 2017]. With the TPC-H data
we are also benchmarking our concurrent insertion algorithms. For these, we examine the
consistency and scalability of the read and write times with growing concurrency under
different work-loads.

For our evaluation, all algorithms are written in C++, as the original Elf implementa-
tion. Furthermore, all algorithm are tuned to an equal extend to ensure a fair comparison.
For our experiments we used Version 8.3 of the GCC with the following compiler flags
-O3 -march=native -ffast-math -fgnu-tm. These build flags arrange that all avail-
able optimizations for the target architecture, such as target specific instruction sets, for
example AVX are enabled and used by the compiler. It also activates support for transac-
tional memory and takes over the necessary linking for the hybrid transactional memory
library.

Test Machine

Our tests run on a Ubuntu 18.04.2 with Linux kernel version 4.15.0-51. The test machine
is a dual Intel® Xeon® Gold 6130 processor with 2.1 GHz base clock, 16 cores and 22.5MB
L3 cache each. The available memory of the system was 768GB main DDR4-2666 ECC
memory. We left hyper-threading and Turbo Boost functionalities turned on and did not
set any scheduling or NUMA settings. While this may lead to some irritating latency
peaks in our measurement results at the first sight, we come more closer to a real world
performance profile.

For our insertion benchmark we used the non-standard heap manager tcmalloc, which
features non-blocking allocations. This is needed in order to benchmark the actual perfor-
mance of the non-blocking insertion algorithm and to not falsify the non-blocking property
by blocking allocation algorithms.

54

6 Evaluation

In the following sections, we will evaluate the performance of our presented algorithms,
starting with our selected merging strategies, following the query evaluation and leading
to the concurrent insertion.

6.1 Merging Strategies

To determine the best merging strategy, we decided to use a microbenchmark with P
arrays of random data, which have to be merged. The array sizes vary between 1,000 and
1 million values per array. To have as less derivation as possible, each benchmark was
repeated 1,000 times and the average of all results was taken as the final value. In the
following Figure 6.1, we show the merging times for the serial, hybrid and parallel merge
dependent from the size of the arrays.

101 102 103 104 105 106

Array Sizes

0

5

10

15

20

25

30

35

Q
u

e
ry

T
im

e
in

m
s

Average Merging Times

Serial Merge

Hybrid Merge

Parallel Merge

Figure 6.1: Average Merging Times

The serial merge algorithm scales linear and is due to its simplicity and absence of thread
initialization overhead the fastest algorithm for small merge sizes. The hybrid and par-
allel merge algorithms perform significantly worse for small merge sizes, since for this
case the thread initiation overhead is bigger than the parallelized work. This changes
for result sizes larger than 100,000 elements. From thereon, the improved throughput
of parallel merge algorithm starts to payout against its initialization overhead. How-
ever, the full parallel algorithm does not perform better than its hybrid counterpart.
This is probably due to the small prefix sum size of 64 in our case. For more parts
to merge, this behaviour will change and the parallel merge algorithm will become the
fastest.

To reduce the variability of the remaining evaluation, we decided to refer to the hybrid
merge strategy as our benchmark choice, since this strategy is a good trade off between a
full parallel merge algorithm, which is for the rather small amount of processors used in

55

6 Evaluation

this evaluation too slow. Furthermore, the serial algorithm, which performs excellent for
result sizes below 100,000 elements, drops performance drastically with higher result sizes.
By choosing the hybrid merge algorithm, we hope to get a better speed up for queries on
large tables with a with a lower selectivity. By doing so, we aim to close the gap between
a table scan and the Elf for low selectivity a little bit.

6.2 Query Approaches

To evaluate our parallel query algorithms, we start by comparing the original Elf im-
plementation by [Broneske et al., 2017] as well as the parallel algorithms against each
other, using a microbenchmark. Afterwards, we evaluate the real world performance of
the range- and subtree-parallel query algorithms.

6.2.1 Microbenchmark

The microbenchmark consists of range queries of the TPC-H Lineitem table data with a
scaling factor of 100. We measure the average query time of 1,000 queries, while using dif-
ferent numbers of threads for the queries. In Figure 6.2, we show the average query times
depending on the number of threads for all three approaches.

1234 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

102

103

A
v
e
ra

g
e

Q
u

e
ry

T
im

e
in

m
s

Average Range Query Times

Serial Elf Traversal

Subtree-Parallel Traversal

Range-Parallel Traversal

Node-Parallel Traversal

Figure 6.2: Average Range Query Time for 1,000 Repetitions With Scaling Factor 100

As we show in Figure 6.2, our node parallel algorithms does not perform well and is not
able to accelerate the traversal at all. This behaviour comes from the big communication
and synchronisation overhead introduced by the fine grained parallelism on the level of
single dimension lists. However, with a very large number of threads, the query time
seems to stabilize on a high level. The subtree as well as the range parallel traversal

56

6 Evaluation

behave differently. With only one thread, both have a significant overhead of around
73% compared to the original Elf traversal algorithm. This latency is introduced by
the thread setup and spawning overhead and since the overall query times are rather
low, this overhead as a significant influence on the query times. However, the range-
and subtree-parallel traversal benefit greatly from more physical core and the query times
shrink drastically. The range-parallel algorithm is able to speed-up range queries by factor
3.7 and the subtree-parallel algorithm even by factor 6.6. Furthermore, they both reach
their lowest query times with the number of threads matching the number of physical
cores. With more threads than physical cores, the performance becomes worse, probably
due to the high dependence of the query time from the bandwidth of the system, added
interconnect traffic for NUMA and increased latency due to hyper-threading. Likewise
it is remarkable that the single subtree traversal is by a factor of 1.7 faster than the
range-parallel traversal, despite the additional communication overhead. This speed-up
can be explained by the fact that for range queries the data are probably not equally
distributed. Thus the Elf is imbalanced and some search ranges contain less values while
others are rather dense. For the range-parallel traversal this means, that some threads
need significantly longer than other threads. The subtree-parallel traversal does not have
this drawback, since a thread does only traverse one subtree at a time. Thus, the traversal
of more, or less dense ranges are equally distributed between all threads. This results in
a drastic reduction of query times due to less busy waiting.

Due to the bad performance of our node parallel traversal compared to the other two
traversal algorithms, we decided to only compare subtree- and range-parallel traversal
against each other in the TPC-H benchmark.

6.2.2 TPC-H Benchmark

This benchmark reflects the performance of our algorithm under common real world
workloads. To simulate such workloads, we use the TPC-H benchmark queries on the
Lineitem table with scaling factor 100. Our used queries are Q1, Q6, Q10, Q14 and Q19,
whereas Q19 is only partially executed on the Lineitem table, thus we only benchmark
this part. To obtain meaningful results, we use the arithmetic mean as our average query
time and repeat each query 1,000 times.

In our first Figure 6.3, we show the latency speed-up of the subtree- and range-parallel
algorithms against the average serial query time dependent on the number of threads
used for parallel traversal. The speed-up is determined as Sn = Tserial

Tparallel
where Tserial is the

average serial query time and Tparallel is the average query time for the parallel algorithm
with n threads.

Range-Parallel Traversal

Both algorithm show a significant speed-up compared to the serial query algorithm. On
Figure 6.3a, we show the scaling behaviour of the range-parallel query algorithm. Its
single threaded performance is only around 70% of the serial algorithm, because it in-
troduces some overhead to setup thread spawning and actually starting the thread. The
range-parallel algorithm is able to outperform the original Elf clearly in every query from

57

6 Evaluation

12 4 6 8 10 12 14 16 20 24 28 32 48 64
Number of Threads

0

2

4

6

8

10

12

A
v
e
ra

g
e

S
p

e
e
d

-u
p

F
a
ct

o
r

Range-Parallel Traversal

Q1

Q6

Q10

Q14

Q19

(a) Average Range-Parallel Speed-Ups

12 4 6 8 10 12 14 16 20 24 28 32 48 64
Number of Threads

0

2

4

6

8

10

12

A
v
e
ra

g
e

S
p

e
e
d

-u
p

F
a
ct

o
r

Subtree-Parallel Traversal

Q1

Q6

Q10

Q14

Q19

(b) Average Subtree-Parallel Speed-Ups

Figure 6.3: TPC-H Queries Speed-Up for Subtree- and Range-Parallel Elf Compared to
Serial Query Times

the break-even point of 4 threads per query. Afterwards, the speed-up factor is highly
dependent from the workload of the query. For Q1, the algorithm is not able to accelerate
the query times much more than factor 1.6, since this query has a very high selectivity of
92-97% [Council, 2014], but we expected this behaviour, since the Elf is designed to work
particularly well for queries with low selectivity such as Q19. Q19 scales very well and
reached a speed up of 5.7, and were not even able to determine an asymptotic behaviour,
which hints to an upper limit for the speed-up.

However, for Q19 and the queries Q6 and Q14, there are some sweet spots at which the
speed-up reaches a local maximum. These extrema come from load distribution and the
associated frequency scaling of the processor cores1. This frequency scaling automatically
reduces the clock significantly on more than four, eight and twelve cores used in our sce-
nario, since our code is optimized with AVX2 instructions, which result in a different clock
than vector-free code. With respect to the NUMA load balancing behaviour for adjacent
ranges on same pages, this clock reductions match exactly to the performance drops at
eight cores, 16 cores and more than 24 cores overall. Only Q6 shows some inconsistencies
with this strategy, which can be traced back to the query type, which leads to a slightly
different scheduling behaviour. Furthermore, Q14 shows a fall off in performance, when
more threads than physical cores are used.

Subtree-Parallel Traversal

The behaviour of the subtree-parallel traversal algorithms, which we depict in Figure 6.3b,
shows a bigger overall speed up of up to factor 11.9 for Q19 and behaves similar to the
range-parallel traversal. Especially queries with low selectivity, such as Q1 profit from
this algorithm. The lowest reached speed-up is factor 3.4 for Q14, which is still more than
for most of the range-parallel traversal. Furthermore, the impact of the frequency scaling
by the CPU is less dramatic. This can be deduced to the different NUMA balancing, since
the memory ranges accessed are not adjacent any more which allows better distribution
of the work between the NUMA nodes.

The major difference between the range-parallel traversal and the subtree-parallel traversal
is the highly different behaviour under hyper-threading. While the range-parallel traversal

1https://en.wikichip.org/w/index.php?title=intel/xeon_gold/6130&oldid=91076

58

https://en.wikichip.org/w/index.php?title=intel/xeon_gold/6130&oldid=91076

6 Evaluation

profited from more virtual cores, except Q14, this is most of the time different for the
subtree-parallel traversal. The speed-up degrades with the utilization of virtual cores for
Q6, Q10 and Q14. We can only observe a significant speed-up for Q19, while Q1 stagnates
as in the range-parallel traversal.

Average Query Times

In this section, we directly compare our proposed algorithms against the current serial
implementation for each of the Lineitem queries. Therefore we measure the query times of
100 queries on the Lineitem table with scaling factor 100.To obtain robust average times
we use the mean of all query times and give the maximum outliers in both directions. We
are comparing the serial algorithm to a singlethreaded version of our algorithms as well
as our parallel algorithms with maximum number of threads available, since this gives the
overall best speed-up. We show our findings in Figure 6.4.

Q1 Q6 Q10 Q14 LQ19

100

101

102

A
v
e
ra

g
e

Q
u

e
ry

T
im

e
in

m
s

Average Query Time Comparison

Serial Elf

Singlethreaded Range-Parallel Elf

Singlethreaded Subtree-Parallel Elf

Multithreaded Range-Parallel Elf

Multithreaded Subtree-Parallel Elf

Figure 6.4: Average Query Times of all Traversals for the Lineitem Table With Scaling
Factor 100

The overhead we introduce in our parallel algorithm compared to the serial algorithm is
rather small. For the range-parallel traversal, we have an overhead of 20-40% for a single
threaded traversal and for the subtree-parallel traversal we can observe a performance
penalty of 50-60%. Despite the overhead introduced for single threaded parallel traversal,
both algorithms scale well. The multithreaded range-parallel traversal with 64 threads
is able to outperform the serial traversal by factor 1.6-5.7 and for the subtree-parallel
traversal with 64 threads by factor 3.4-11.9.

59

6 Evaluation

6.3 Concurrent insertion

In this section, we evaluate the performance of our adapted insertion along with their
proposed algorithms. Therefore, we changed the standard memory allocation algorithms
of the libstdc++ with the tcmalloc2 implementation. These give us contention-free allo-
cations, which make it possible to have a real lock-free implementation of our algorithms
and thus meaningful evaluation results. To benchmark the performance of our implemen-
tation, we decided to do a mixed workload analysis. This means that we measure the
insertion times as well as the exact match query times under different load situations from
high query loads to high write workloads. As benchmark data we used once more the
TPC-H Lineitem table with shuffled tuple data and repeated the benchmark 1 million
times for robust results. For the desired workload, we started the amount of threads
requested with one global atomic variable synchronising the total number of repetitions
between all running threads. Each thread generates the read, respectively write workload
utilizing a Bernoulli distribution with the wanted percentage for a write as probability.
This random booleans give in each repetition of the experiment whether a read or inser-
tion shall be executed. This random distribution over all threads guarantees that no wait
situation occurs where all readers finished their work and writers were blocked until all
reads finished.

We show the results of our evaluation with two box plots per workload, one for the read
performance and one for write. The box plots have the mean as robust average and the
boxes represent the quartiles. The whiskers show the maximum, respectively minimum
time of all repetitions.

In the following we discuss the behaviour of the three parallelized algorithms under two
representative workloads - one read-heavy with only 10% writes and one write-heavy with
75% writes workload - and afterwards compare them to each other. For further workloads
we included our full results in the Appendices A, B and C

6.3.1 Locking Parallel Insertion

The first algorithm we examine is the locking parallel insertion algorithm with 10% write
workload in Figure 6.5.

As we show in Figure 6.5a, the single thread performance of our locking read algorithm
is even a bit faster than the serial read time. This is due to an iterative version of
the traversal against the default recursive implementation of the serial Elf. With grow-
ing number of threads, the read times for the concurrent Elf degrades slightly with a
decrease in performance of factor 2.2 with 64 threads, but the outliers do not change
much. Only the quartile boxes shrink, which is a signal that the mutex overhead stabi-
lizes.

The insertion time of the locking parallel Elf degrades similar to the read performance.
While the average insertion time with one core is rarely slower than the serial insertion,
the performance degrades quickly and shows an asymptotic behaviour with an extreme
at 8 threads. Afterwards the read times converge, resulting in a performance loss of

2https://goog-perftools.sourceforge.net/doc/tcmalloc.html

60

https://goog-perftools.sourceforge.net/doc/tcmalloc.html

6 Evaluation

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Locking Insertion with 10% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Locking Insertion with 10% Writes

Avg. serial write time

(b) Write Times

Figure 6.5: Locking Parallel Insertion Times With 10% Writes

in the magnitude of 31 times the insertion time of the serial insertion at 64 threads on
average.

The overall behaviour does not changes much with a higher write, than read workload,
which we show in Figure 6.6. For the read workloads, the performance curve is very
similar, but the local maximum can be located at 3 threads instead of 8 with 10%
writes. After this extreme, the query times slowly start converging back to the serial
read times.

At 75% writes, for read times, which we illustrate in Figure 6.6a we observed the same
behaviour. As before, insertion times grow quickly until they reach their maximum at
3 threads and then start to converge back to the average serial insertion time. How-
ever the algorithm behaves the same at 75% as before on 10%, just by the order of
magnitude higher as the serial insertion time as well. This means that for higher write
workloads, the writes become slower and thus the divergence is not as big as before.

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Locking Insertion with 75% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Locking Insertion with 75% Writes

Avg. serial write time

(b) Write Times

Figure 6.6: Locking Parallel Insertion Times With 75% Writes

This behaviour can not be explained by any hardware characteristics, but by the design
of the rw-locking mutex we used. This kind of mutex generally seems to have a higher
processing overhead because it allows two different locking states. Therefore a lot ad-
ditional logic is needed, which can make a RW-mutex slower than an exclusive mutex3.
This leads to the fact that the critical section must be reasonably large, such that the

3https://askldjd.com/2011/03/06/performance-comparison-on-reader-writer-locks/

61

 https://askldjd.com/2011/03/06/performance-comparison-on-reader-writer-locks/

6 Evaluation

more costly mutex pays off and there must be more contention than under normal locks
that the additional effort pays off. This is the reason why the performance degrades that
quickly and begins to a amortize only at reasonably high concurrency, which leads to
more contention. While our read critical section is rather small, the write section is much
larger and additionally for high read loads, there are naturally more read locks. Since
these read locks also block write accesses, this leads to a rather poor write performance
for the 10% writes benchmark. In contrast, the read performance degradations is small
due to the non-exclusive read access.

For high write workloads, this behaviour changes, since writes require exclusive access,
which prevents concurrent reads. This is visible by the generally higher read times and
the big performance hit with a small number of threads. However, these higher contention
times due to rather large critical write sections, leads to a faster amortization of the mutex
costs and the performance reaches its worst point at 3 threads, instead of 8 before on high
read workloads.

6.3.2 Lock-Free Parallel Insertion

Our second version is the lock-free version of the insert algorithm, which shows a slightly
different behaviour than the locking version. In Figure 6.7, we show the read, and
write times of the insertion algorithm benchmark with 10% writes. The first notable
fact we can see is that the read, as well as the write times only show a slight degra-
dation of their performance with the number of threads larger than the number of
cores.

Furthermore it is notable that with Figure 6.7a we generally reach very reliable query times
with at least 50% of the read operation within ±1µs. For the insert operation, we show the
same behaviour in Figure 6.7b, where 50% of the insert operations has an insertion time
window within ±20µs from average with a tendency to the lower times. Even though,
there are some outliers, they are generally lower than the one we observed for the locking
implementation and also rather unbiased for the read operations. For writes, the outliers
towards lower times are somewhat nearer to the median than towards larger insertion
times, but still not as large as for the locking insertion.

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Lock-Free Insertion with 10% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Lock-Free Insertion with 10% Writes

Avg. serial write time

(b) Write Times

Figure 6.7: Lock-Free Parallel Insertion Times 10% Writes

62

6 Evaluation

In Figure 6.7 we showed the steady behaviour of the read as well as the insert times.
We also observe the same behaviour in our write heavy benchmark with 75% writes,
whose results we show in Figure 6.8. As expected, the read performance under high write
workload is marginally lower than under low write workload. However the performance
kept nearly identical with respect to the serial read time, as we depict in Figure 6.8a. The
higher read times can thus be explained by the overall bigger Elf to traverse, since there
are more data in the Elf on 75% writes than for 10% writes.

Another interesting observation from Figure 6.8b in comparison to Figure 6.7b is that the
serial write performance degraded with the amount of inserted data. This is not the case
for our lock-free parallel insertion. Its insertion time kept nearly constant under both
workloads, which provides a speed-up of up to factor 5.8 and even more for workloads
with more than 75% writes.

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Lock-Free Insertion with 75% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Lock-Free Insertion with 75% Writes

Avg. serial write time

(b) Write Times

Figure 6.8: Lock-Free Parallel Insertion Times With 75% Writes

The steady behaviour we showed is typical for lock-free algorithms since no waiting situ-
ation occurs. That the performance degrades at all with more threads than cores is the
consequence of having only one RMW-unit per core [Intel, 2019b]. This unit is needed
for atomic instructions and thus generates a latency bottleneck when the instructions can
not be pipelined. On the other hand, this responsiveness comes with the price of added
overhead due to a less efficient caching behaviour. The caching is worse since serial access
to continuous memory is the most cache efficient access strategy, but since we replaced
the vectors by skip lists we trade-off some cache performance for more steady query times
and parallelism. However under workloads with higher write than read percentage, the
lock-free algorithm on average provides a speed-up of at least factor 2.6 for insertions
compared to the serial version.

6.3.3 Transactional Parallel Insertion

The third variant we introduced is the transactional parallel insertion. As for the previous
two algorithms, in the following we will show our benchmark results for the read heavy
insertion with a write ratio of 10% and afterwards a write heavy benchmark with 75%
insertion.

For the 10% writes benchmark, whose visualisation of query and write times is shown
in Figure 6.9, we can see a similar behaviour between the read and insertion times. The

63

6 Evaluation

insertion times, we show in 6.9a, are approximately 3.4 times higher in the single threaded
traversal, than the default query algorithm. With growing concurrency, this behaviour
does not change and eventually the query time as well as the quartiles of the query times
grow significantly with the number of threads concurrently accessing the Elf. However,
with low concurrency, the query times shrink marginally before growing and the outliers
keep steady with growing concurrency.

In Figure 6.9b we show the insertion times, where we can observe a similar behaviour.
Similar to the read times, the write times increase with growing concurrency, but the
outliers remain in the same order of magnitude. Only the average and quartiles are in-
creasing. Furthermore, the quartiles are significantly smaller than for the read times. The
reason behind is probably that the writes are largely independent from the reads and vice
versa, since the reads traverse the Elf without any transactions. However under high con-
currency during insertions, the number of transaction conflicts increases, which increases
the transaction latency and thus the overall insertion time.

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Transactional Insertion with 10% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Transactional Insertion with 10% Writes

Avg. serial write time

(b) Write Times

Figure 6.9: Transactional Parallel Insertion Times With 10% Writes

This assumption is supported, when we look at the write intensive benchmark, whose re-
sults are shown in Figure 6.10. The higher write load reduced the quartile derivation for
read workloads shown in 6.10a because there are overall less reads that can conflict with
each other. Furthermore, the write time quartiles we depict in 6.10b are larger than for the
10% write workload. Even though they slowly converge to the average with growing num-
ber of concurrent operations. This convergence happens, because the average insertion
time increases with more concurrency and thus, the conflicting operations do no longer
have that much influence on the overall insertion time.

64

6 Evaluation

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Transactional Insertion with 75% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Transactional Insertion with 75% Writes

Avg. serial write time

(b) Write Times

Figure 6.10: Transactional Parallel Insertion Times With 75% Writes

The overall performance of the transactional insertion approach is worse than expected.
The algorithm does not particularly scale well and is slower than the serial algorithm
under medium to high concurrency. However, in this approach, the query time window
was smaller than the one for locking insertions and completely independent from the con-
currency level. This makes the algorithm suited for real time requirements where reliable
query times are needed. Furthermore, the performance probably can be improved by
allowing more hardware transaction retries and maybe even migrating from a transac-
tional library to intrinsics to manage the transactions. Also a larger amount of smaller
transactions could be considered, since this mostly leads to less dramatic transaction
conflicts.

6.3.4 Elf Storage Consumption

In the previous sections, we discussed the behaviour of the different insertion algorithms
proposed. Another important factor beside latency is the storage consumption of the Elf.
Since the Elf is a data structure utilizing prefix sharing it features a light compression,
which should not be destroyed by our adaptions. In the following, we determine the stor-
age consumption of our adapted Elf structures and compare them to the read optimized
Elf as well as the conceptual Elf and the raw data.

For our evaluation we compare the sizes of the data structures with 1 million randomly
chosen tuples inserted form the Lineitem table with scaling factor one. Since we choose
our tuples uniform at random, this does not change the overall distribution of the data
in the Lineitem table. We determined the storage consumption empirically with the tool
heaptrack4, which replaces the standard allocation mechanisms and logs all allocations
of the program started with heaptrack. Since that way also memory which is not used
by the Elf is tracked, we filtered the allocations for its origin in the corresponding build
and insert algorithms. We show our results in Figure 6.11.

4https://github.com/KDE/heaptrack

65

https://github.com/KDE/heaptrack

6 Evaluation

R
aw

D
at

a

L
in

ea
ri

ze
d

E
lf

In
se

rt
E

lf

In
se

rt
E

lf
L

oc
ki

n
g

In
se

rt
E

lf
T

ra
n

sa
ct

io
n

al

In
se

rt
E

lf
L

oc
kf

re
e0

1

2

3

4

5

S
to

ra
g
e

C
o
n

su
m

p
ti

o
n

in
G

B

Storage Consumption With 1 Million Tuples

Figure 6.11: Storage Consumption of the Different Elf Structures for 1 Million Tuples of
the Lineitem Table

The first result of this experiment is, that the Linearized Elf still has the lowest storage
consumption of all Elf variants, but does not show any compression. While this obser-
vation at the first sight seems to contradict with the observations of Broneske et al.,
this is not the case. Our dataset only consists of 1 million tuples, while the Lineitem
dataset used in the work of Broneske et al. contained more than 600 million tuples. At
this size, there are many more prefixes than in a random subset of just 1 million tuples
and thus more prefix redundancy elimination. The Linearized Elf just does not have
enough data inserted to eliminate enough prefix redundancies to show a compression
effect.

Locking Elf

As we can see, all our adaptions in the structure of the Elf led to a drastic increase
in the storage consumption. The locking Insert Elf implementation has the smallest
increase in size of our three proposed structures with 58% larger than the normal insert
Elf implementation. This is due to the added overhead of a RW-mutex and the additional
vector, which holds the pointers instead of mixing values and pointer in one vector for

66

6 Evaluation

DimensionLists. For each DimensionLists, this doubles the node initial size compared to
the serial Insert Elf nodes.

Transactional Elf

The transactional Elf has a far bigger overhead, which can be explained by the use of skip
lists instead of vectors. Since skip lists are a data structure with linked nodes, its storage
overhead is far bigger, since every value in a DimensionList does not only need a pointer to
the next DimensionList, but also a pointer to the next value in the list. Additionally, each
skip list node contains an array of fast lanes, which take up additional memory of eleven
more pointers. However, against the lock-free Elf, the leaf nodes of the transactional Elf
has lightweight leaf nodes, which consist just of a continuous memory region for the TIDs
and the size of the memory region. This leads to an overall space overhead of around
factor 6.3 compared to the serial Insert Elf.

Lock-Free Elf

The largest space overhead of all three adapted versions has the lock-free Elf, its is ap-
proximately by factor 7.6 larger than the space utilized by the serial Insert Elf. This is
in large parts the responsibility of the skip list as for the transactional Elf. Furthermore
there are several other factors, which lead to an even higher space utilization than the
transactional approach. One factor is the concurrent_vector used for the leaf nodes,
which is designed as an array of vectors to ensure non-blocking insertions. However, this
design leads to a higher space consumption and even more memory fragmentation. Fur-
thermore, the atomic pointers to the skip lists within the inner lock-free elf nodes are
aligned through the architecture specific destructive cache inference size, which is in our
case 64 byte. This ensures that concurrent access to the same atomic does not lead to
cache conflicts due to false sharing

The biggest downside of our approaches is the replacement of the enormous space effi-
cient vectors against the skip lists. This also leads to fragmentation and therefore more
page and cache misses. A trade-off which effects becomes worse with growing size of the
Elf and reduces the performance drastically. Unfortunately we are not able to empiri-
cally evaluate the impact of memory fragmentation on the performance in the limited
time scope of this thesis. However, the step away from continuous data structures was
needed to reach optimal concurrency, since to the best of our knowledge no efficient
non-blocking data structures with continuous storage and fast random insertion times
exists.

67

7 Conclusion

In the previous chapters we presented our parallelization approaches and empirically eval-
uated them. In this chapter we will wrap-up and summarise the contributions of this the-
sis as well as the performance of our suggested approaches. Afterwards we outline some
research questions that arise in the context of this thesis.

7.1 Concept & Implementation

In this work, we brought task parallelism to the Elf in two aspects. At first, we pro-
posed three thread parallel approaches to parallelize the query algorithms. The range-
and subtree-parallel traversal as a rather coarse-grained approach on subtree- and the
node-parallel traversal as a fine grained task parallel approach on node level. For the
subtree- and range-parallel traversal, we also adapted different result-merging variants
to further optimize the query times and find the best merging technique for our ap-
proaches.

Furthermore, we adapted the insertion algorithm for concurrent insertions. Therefore we
choose three different approaches. The first one with minimal adaptions to the Elf node
structure to enable data-race-free concurrency with a fine grained locking scheme. The
second one with a major adaption to the Elf, by replacing the data array of the nodes
with a lock-free skip list to reach non-blocking concurrency for better scalability at high
contention with CAS-instructions. At last a transactional approach with similar adaptions
to the Elf structure as for the lock-free algorithm but instead of using CAS-instructions
we rely on a hybrid version using both hardware and software memory transactions. Since
the skip lists we utilized had no range query, we also implemented a range query algorithm
based on their exact match algorithm.

Subsequentially, we also empirically evaluated our proposed query and insertion algo-
rithms to determine their performance as well as potential drawbacks in our approaches.

7.2 Evaluation

For our evaluation, we started with a microbenchmark of the merge algorithm, with
the result that the serial merge algorithm outreaches our parallel variants by several or-
ders of magnitude until the input sizes become high enough. However, since we await
a large amount of data to merge, we decided to use the merge algorithm with a par-
allel merge strategy but only serial prefix summing. We did this, since the number
of inputs to merge is not as big, to expect a parallel prefix sum algorithm to pay-
off.

68

7 Conclusion

Parallel Queries

With the hybrid merge algorithm, we compared the node parallel, as well as the range-
and subtree-parallel algorithms in a benchmark of range queries. The results showed
that the performance of our node parallel query algorithm did not show the expected
behaviour. Instead of minimizing the query times with a more fine grained parallelism,
the query times grew with more threads used in the traversal. Our explanation for this
behaviour is that the communication overhead introduced by the node traversal does not
pay-off for the small DimensionList sizes found in the Elf. However our other proposed
algorithm behaved as expected and was able to speed up the range queries compared to
the serial counterpart.

To understand the behaviour of the two well behaving algorithms under real world work-
loads we evaluated their speed-up utilizing the TPC-H benchmark queries on the Lineitem
table with scaling factor 100. The result of this benchmark is that both algorithms scale
well with the growing number of threads used in the query. Furthermore, the subtree-
parallel query is able to outperform the range query for every workload by more than
factor 2 and the serial algorithm for factor 3.4 up to 11.9 depending on the query char-
acteristics. Even though, the performance of both algorithms is not only dependent on
the number of threads working in parallel, but also the frequency of the cores, which is
responsible for the sweet spots we found for both algorithm.

Concurrent Insertion

In the second part of our evaluation, we tested the behaviour of our insertion algorithms
regarding performance and space utilization. Therefore we measured the read, as well
as insertion times under different read-write workloads and different concurrency levels.
We observed that all three algorithms were not able to outperform the serial algorithm
regarding single read performance. Furthermore only our lock-free algorithm was able
to outperform the serial write performance under high write workloads. The locking
algorithm performed better under high write workloads and concurrency than high read
workloads. The transactional insertion is not able to keep up with the performance of the
other approaches probably due to the poor utilization of hardware transactions by our
used library. Anyway, the transactional approach showed a similar consistent behaviour
as the lock-free variant. Overall the lock-free and the locking algorithms were able to
speed-up the insertions for the locking algorithm by at least factor 2 and for the lock-free
by at least factor 2.6 compared to a serial execution. However, the benchmarks cannot be
seen as a completely general analysis of the algorithms behaviour, since for time reasons
we are only able to determine the performance for a uniform random distribution of the
Lineitem table with scaling factor 100, but not any other distribution. Yet it is likely for
the algorithms to show a completely different behaviour for different distributions such
as the insertion of a sorted sequence. Furthermore we have no data how the algorithms
behave for insertions into a pre-build Elf with a larger number of tuples already inserted.
Furthermore, we only collected data for single execution times, which only gives us the
possibility to reason about the behaviour of single queries but not the overall speed-up
achievable by running multiple operations concurrently.

69

7 Conclusion

To complete our evaluation we also measured the space requirements of our adapted
Elf structures. The results proved that the most lightweight adaptions were made on
the locking Elf with only 58% higher than the serial Insert Elf. The replacement of a
vector with the skip list for the lock-free and transactional algorithms lead to a signifi-
cantly higher memory consumption by up to factor 7.6 compared to the original Insert
Elf implementation. Furthermore, it is likely that larger Elfs with skip lists are prone
to high memory fragmentation and thus reduced performance due to page and cache
misses.

7.3 Future Work

Since the build time of the read-optimized Elf takes a major amount of time, a paralleli-
sation of the build and linearisation of the read-optimized Elf could bring huge speed-up.
Since we have only a limited scope of time for this theses, we left this parallelization part
out of our consideration. Not at last, since the build time amortizes over the time. How-
ever a parallelisation could be beneficial anyway, especially for large tables or dynamic
data.

Parallel Queries

The parallel node level traversal approach utilizes a depth first traversal, which could be a
reason for the bad performance. With a restructuring of the Elf nodes by adding a length
field at the start of each node replacing the MSB markers, a breadth first traversal (BFS)
will be possible. Changing the node parallel traversal to a BFS could greatly improve its
performance.

Furthermore, the subtree- and range-parallel traversal does not show asymptotic be-
haviour for some queries, which is a sign that these algorithms can be further parallelized
on GPU and even adapted for heterogeneous computing to improve the performance even
more.

Concurrent Insertion

In our work we introduced concurrent insertions, which we proved to be not linearisable.
This is a big disadvantage, since this criteria is crucial for the use in most database
systems. However, there exist some approaches to make range queries linearisable that
may be adaptable to our approach [Chatterjee, 2017], [Chatterjee et al., 2018], [Brown
& Avni, 2012]. This would bring the concurrent Elf a step further to be used in modern
database systems.

70

Appendices

A Locking Insert Benchmarks

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Locking Insertion with 25% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Locking Insertion with 25% Writes

Avg. serial write time

(b) Write Times

Figure A.1: Locking Parallel Insertion Times With 25% Writes

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Locking Insertion with 50% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Locking Insertion with 50% Writes

Avg. serial write time

(b) Write Times

Figure A.2: Locking Parallel Insertion Times With 50% Writes

71

Appendices

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Locking Insertion with 90% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Locking Insertion with 90% Writes

Avg. serial write time

(b) Write Times

Figure A.3: Locking Parallel Insertion Times With 90% Writes

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Locking Insertion with 100% Writes

Avg. serial write time

Figure A.4: Locking Parallel Insertion Times Write Only

B Lock-Free Insert Benchmarks

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Lock-Free Insertion with 25% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Lock-Free Insertion with 25% Writes

Avg. serial write time

(b) Write Times

Figure B.1: Lock-Free Parallel Insertion Times With 25% Writes

72

Appendices

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Lock-Free Insertion with 50% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Lock-Free Insertion with 50% Writes

Avg. serial write time

(b) Write Times

Figure B.2: Lock-Free Parallel Insertion Times With 50% Writes

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Lock-Free Insertion with 90% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Lock-Free Insertion with 90% Writes

Avg. serial write time

(b) Write Times

Figure B.3: Lock-Free Parallel Insertion Times With 90% Writes

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Lock-Free Insertion with 100% Writes

Avg. serial write time

Figure B.4: Lock-Free Parallel Insertion Times Write Only

73

Appendices

C Transactional Insert Benchmarks

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Transactional Insertion with 25% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Transactional Insertion with 25% Writes

Avg. serial write time

(b) Write Times

Figure C.1: Transactional Parallel Insertion Times With 25% Writes

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Transactional Insertion with 50% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Transactional Insertion with 50% Writes

Avg. serial write time

(b) Write Times

Figure C.2: Transactional Parallel Insertion Times With 50% Writes

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

R
e
a
d

T
im

e
in

m
s

Read Times for Transactional Insertion with 90% Writes

Avg. serial read time

(a) Read Times

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Transactional Insertion with 90% Writes

Avg. serial write time

(b) Write Times

Figure C.3: Transactional Parallel Insertion Times With 90% Writes

74

Appendices

1 2 3 4 6 8 10 12 14 16 20 24 28 32 40 48 58 64
Number of Threads

10−4

10−3

10−2

10−1

100

101

102

103

104

In
se

rt
T

im
e

in
m

s

Write Times for Transactional Insertion with 100% Writes

Avg. serial write time

Figure C.4: Transactional Parallel Insertion Times Write Only

75

Bibliography

Bayer, R., & Schkolnick, M. (1977). Concurrency of Operations on B-trees. Acta Infor-
matica, 9 (1), 1–21. doi:10.1007/BF00263762

Boncz, P. A., Kersten, M. L., & Manegold, S. (2008). Breaking the Memory Wall in Mon-
etDB. Communications of the ACM, 51 (12), 77–85. doi:10.1145/1409360.1409380

Braginsky, A., & Petrank, E. (2012). A Lock-free B+Tree. In Proceedings of the Twenty-
fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures
(pp. 58–67). doi:10.1145/2312005.2312016

Broneske, D., Köppen, V., G., & Schäler, M. (2017). Accelerating Multi-Column Selection
Predicates in Main-Memory - The Elf Approach. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE) (pp. 647–658). doi:10.1109/ICDE.2017.118

Brown, T., & Avni, H. (2012). Range Queries in Non-blocking k-ary Search Trees. In
Principles of Distributed Systems (pp. 31–45). doi:10.1007/978-3-642-35476-2_3

Chatterjee, B. (2017). Lock-free Linearizable 1-Dimensional Range Queries. In Proceed-
ings of the 18th International Conference on Distributed Computing and Networking
(9:1–9:10). doi:10.1145/3007748.3007771

Chatterjee, B., Walulya, I., & Tsigas, P. (2018). Concurrent Linearizable Nearest Neigh-
bour Search in LockFree-kD-tree. In Proceedings of the 19th International Confer-
ence on Distributed Computing and Networking (11:1–11:10). doi:10.1145/3154273.
3154307

Council, T. P. P. (2014). TPC benchmark H (decision support). Retrieved from http :
//www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

Dechev, D., Pirkelbauer, P., & Stroustrup, B. (2006). Lock-free Dynamically Resiable
Arrays. In Proceedings of the 10th International Conference on Principles of Dis-
tributed Systems (pp. 142–156). doi:10.1007/11945529_11

Dechev, D., Pirkelbauer, P., & Stroustrup, B. (2010). Understanding and Effectively Pre-
venting the ABA Problem in Descriptor-Based Lock-Free Designs. In Proceedings
of the 2010 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (pp. 185–192). doi:10 . 1109/ ISORC .
2010.10

Detlefs, D. L., Martin, P. A., Moir, M., & Steele, G. L., Jr. (2001). Lock-free Reference
Counting. In Proceedings of the Twentieth Annual ACM Symposium on Principles
of Distributed Computing (pp. 190–199). doi:10.1145/383962.384016

Dijkstra, E. W. (1962). Over de sequentialiteit van procesbeschrijvingen. Transactions
by Martien van der Burgt and Heather Lawrence. Retrieved from http://www.cs.
utexas.edu/users/EWD/ewd00xx/EWD35.PDF

76

https://doi.org/10.1007/BF00263762
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1109/ICDE.2017.118
https://doi.org/10.1007/978-3-642-35476-2_3
https://doi.org/10.1145/3007748.3007771
https://doi.org/10.1145/3154273.3154307
https://doi.org/10.1145/3154273.3154307
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
https://doi.org/10.1007/11945529_11
https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1145/383962.384016
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF

Bibliography

Felber, P., Fetzer, C., & Riegel, T. (2008). Dynamic Performance Tuning of Word-based
Software Transactional Memory. In Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (pp. 237–246). doi:10.
1145/1345206.1345241

Feldman, S., Valera-Leon, C., & Dechev, D. (2016). An Efficient Wait-Free Vector. IEEE
Transactions on Parallel and Distributed Systems, 27 (3). doi:10.1109/TPDS.2015.
2417887

Ferguson, C., & Korf, R. E. (1988). Distributed Tree Search and Its Application to Alpha-
beta Pruning. In Proceedings of the Seventh AAAI National Conference on Artificial
Intelligence (pp. 128–132). Saint Paul, Minnesota: AAAI Press.

Flynn, M. (2011). Flynn’s Taxonomy. In Encyclopedia of Parallel Computing (pp. 689–
697). Springer US.

Fraser, K. (2004). Practical lock-freedom. University of Cambridge, Computer Laboratory.
Retrieved from https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

Friedman, D. P., & Wise, D. S. (1978). Aspects of applicative programming for parallel
processing. IEEE Transactions on Computers, (4), 289–296.

Gaede, V., & Günther, O. (1998). Multidimensional Access Methods. ACM Computing
Surveys, 30 (2), 170–231. doi:10.1145/280277.280279

Harris, T. L. (2001). A Pragmatic Implementation of Non-blocking Linked-lists. In Dis-
tributed Computing (pp. 300–314). doi:10.1007/3-540-45414-4_21

Herlihy, M. [M.], Luchangco, V., & Moir, M. (2003). Obstruction-free synchronization:
double-ended queues as an example. In 23rd International Conference on Distributed
Computing Systems (pp. 522–529). doi:10.1109/ICDCS.2003.1203503

Herlihy, M. [Maurice]. (1993). A Methodology for Implementing Highly Concurrent Data
Objects. ACM Transactions on Programming Languages and Systems, 15 (5), 745–
770. doi:10.1145/161468.161469

Herlihy, M. P., & Wing, J. M. (1990). Linearizability: A correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst., 12 (3), 463–492. doi:10.1145/78969.
78972

Herlihy, M. [Maurice], & Moss, J. E. B. (1993). Transactional Memory: Architectural Sup-
port for Lock-free Data Structures. ACM SIGARCH Computer Architecture News,
21 (2), 289–300. doi:10.1145/173682.165164

Hillis, W. D., & Steele, G. L., Jr. (1986). Data Parallel Algorithms. Communications of
the ACM, 29 (12), 1170–1183. doi:10.1145/7902.7903

Horn, D. (2005). Stream Reduction Operations for GPGPU Applications. In M. Pharr &
R. Fernando (Eds.), GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu Gems) (Chap. 36, pp. 573–589).
Addison-Wesley Professional.

IBM. (1983). IBM System/370 Extended Architecture — Principles of Operation. Re-
trieved from http://bitsavers.trailing- edge.com/pdf/ibm/370/princOps/SA22-
7085-0_370-XA_Principles_of_Operation_Mar83.pdf

77

https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1145/1345206.1345241
https://doi.org/10.1109/TPDS.2015.2417887
https://doi.org/10.1109/TPDS.2015.2417887
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://doi.org/10.1145/280277.280279
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1109/ICDCS.2003.1203503
https://doi.org/10.1145/161468.161469
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/173682.165164
https://doi.org/10.1145/7902.7903
http://bitsavers.trailing-edge.com/pdf/ibm/370/princOps/SA22-7085-0_370-XA_Principles_of_Operation_Mar83.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/370/princOps/SA22-7085-0_370-XA_Principles_of_Operation_Mar83.pdf

Bibliography

Intel, C. (2019a). Intel 64 and IA-32 Architectures Software Developer’s Manual Combined
Volumes 2A, 2B, 2C, and 2D: Instruction Set Reference, A-Z. Retrieved from https:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-instruction-set-reference-manual-325383.pdf

Intel, C. (2019b). Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
1:Basic Architecture. Retrieved from https://software.intel.com/sites/default/files/
managed/a4/60/253665-sdm-vol-1.pdf

Kardaras, M., Siakavaras, D., Nikas, K., Goumas, G., & Koziris, N. (2018). Fast Concur-
rent Skip Lists with HTM. In 11th International Symposium on High-Level Parallel
Programming and Application. Retrieved from http : //www.cslab . ece . ntua . gr /
~knikas/files/papers/hlpp2018.pdf

Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A. D., Kaldewey, T., . . . Dubey, P.
(2010). FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data (pp. 339–350). doi:10.1145/1807167.1807206

Ladner, R. E., & Fischer, M. J. (1980). Parallel Prefix Computation. Journal of the ACM,
27 (4), 831–838. doi:10.1145/322217.322232

Lev, Y., & Maessen, J.-W. (2008). Split Hardware Transactions: True Nesting of Transac-
tions Using Best-effort Hardware Transactional Memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(pp. 197–206). doi:10.1145/1345206.1345236

Levandoski, J. J., Lomet, D. B., & Sengupta, S. (2013). The Bw-Tree: A B-tree for New
Hardware Platforms. In Proceedings of the 2013 IEEE International Conference on
Data Engineering (ICDE) (pp. 302–313). doi:10.1109/ICDE.2013.6544834

Mckenney, P., Kleen, A., Krieger, O., Russell, R., Sarma, D., & Soni, M. (2001). Read-
Copy Update. In AUUG Conference Proceedings 2001.

Michael, M. M. (2004). Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems, 15 (6), 491–504. doi:10 .
1109/TPDS.2004.8

Nguyen, H. (2007). Gpu gems 3. (First, Chap. 39). Addison-Wesley Professional.

Plattner, H. (2009). A Common Database Approach for OLTP and OLAP Using an In-
memory Column Database. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (pp. 1–2). doi:10.1145/1559845.1559846

Pugh, W. (1990). Skip Lists: A Probabilistic Alternative to Balanced Trees. Communica-
tions of the ACM, 668–676. doi:10.1145/78973.78977

Rao, J., & Ross, K. A. (2000). Making B+- Trees Cache Conscious in Main Memory.
SIGMOD Record, 29 (2), 475–486. doi:10.1145/335191.335449

Saake, G., Sattler, K., & Heuer, A. (2011). Datenbanken - Implementierungstechniken, 3.
Auflage. (Chap. 9, p. 441). MITP.

Shavit, N., & Touitou, D. (1997). Software transactional memory. Distributed Computing,
10 (2), 99–116. doi:10.1007/s004460050028

78

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
http://www.cslab.ece.ntua.gr/~knikas/files/papers/hlpp2018.pdf
http://www.cslab.ece.ntua.gr/~knikas/files/papers/hlpp2018.pdf
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1145/322217.322232
https://doi.org/10.1145/1345206.1345236
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/1559845.1559846
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/335191.335449
https://doi.org/10.1007/s004460050028

Bibliography

Spear, M. F., Dalessandro, L., Marathe, V. J., & Scott, M. L. (2009). A Comprehen-
sive Strategy for Contention Management in Software Transactional Memory. ACM
SIGPLAN Notices, 44 (4), 141–150. doi:10.1145/1594835.1504199

Sprenger, S., Schäfer, P., & Leser, U. (2018). Multidimensional Range Queries on Modern
Hardware. In Proceedings of the 30th International Conference on Scientific and
Statistical Database Management (4:1–4:12). doi:10.1145/3221269.3223031

Sprenger, S., Schäfer, P., & Leser, U. (2019). BB-Tree: A practical and efficient main-
memory index structure for multidimensional workloads. In 22nd International Con-
ference on Extending Database Technology (pp. 169–180).

Sprenger, S., Zeuch, S., & Leser, U. (2017). Cache-Sensitive Skip List: Efficient Range
Queries on Modern CPUs. In Data Management on New Hardware (pp. 1–17).
Springer International Publishing.

Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., & Schaffner, J. (2009).
SIMD-scan: Ultra Fast In-memory Table Scan Using On-chip Vector Processing
Units. Proceedings of the VLDB Endowment, 2 (1), 385–394. doi:10.14778/1687627.
1687671

Zäschke, T., Zimmerli, C., & Norrie, M. C. (2014). The PH-tree: A Space-efficient Stor-
age Structure and Multi-dimensional Index. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data (pp. 397–408). doi:10.1145/
2588555.2588564

79

https://doi.org/10.1145/1594835.1504199
https://doi.org/10.1145/3221269.3223031
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.1145/2588555.2588564
https://doi.org/10.1145/2588555.2588564

Statement of Authorship /
Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Bachelorarbeit selbstständig und ausschließlich
unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.
Die aus fremden Quellen direkt oder indirekt übernommenen Stellen sind als solche kenn-
tlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form weder einer anderen Prüfungs-
behörde vorgelegt oder noch anderweitig veröffentlicht.

Unterschrift Datum

80

	Acknowledgements
	Abstract
	List of Figures
	List of Code Listings
	List of Algorithms
	Introduction
	Background
	Parallel Computer Architectures
	Multithreading
	Blocking and Non-Blocking Algorithm
	Atomic Instructions
	Transactional Memory
	Linearisability
	Asynchronous Programming

	The Elf
	Write-Optimized Elf
	Read-Optimized Elf

	Non-Blocking Data Structures
	Skip Lists
	Non-Blocking Vector

	Related Work
	Query Parallelization
	Range-Parallel Traversal
	Implementation

	Subtree-Parallel Traversal
	Implementation

	Node-Parallel Traversal
	Implementation

	Result Merging Strategies
	Serial Merge
	Hybrid Merge
	Parallel Merge

	Linearisability

	Insert Parallelization
	Blocking Parallel Insertion
	Node Structure
	Implementation

	Non-Blocking Parallel Insertion
	Range Find for Transactional Skip List
	Range Find for Lock-Free Skip List
	Transactional Node Structure
	Lock-Free Node Structure
	Implementation

	Linearisability

	Evaluation
	Merging Strategies
	Query Approaches
	Microbenchmark
	TPC-H Benchmark

	Concurrent insertion
	Locking Parallel Insertion
	Lock-Free Parallel Insertion
	Transactional Parallel Insertion
	Elf Storage Consumption

	Conclusion
	Concept & Implementation
	Evaluation
	Future Work

	Appendices
	Locking Insert Benchmarks
	Lock-Free Insert Benchmarks
	Transactional Insert Benchmarks

	Bibliography
	Statement of Authorship / Selbstständigkeitserklärung

