
University of Magdeburg

School of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master’s Thesis

Elf meets MonetDB: Integrating a
multi-column structure into a

column store

Author:

Florian Bethe

May 11, 2018

Advisors:

Prof. Gunter Saake

Department for Technical and Business Information Systems

M.Sc. David Broneske

Department for Technical and Business Information Systems

Bethe, Florian:
Elf meets MonetDB: Integrating a multi-column structure into a column store
Master’s Thesis, University of Magdeburg, 2018.

Abstract

The emergence of main-memory DBMS brought about the need of cache-conscious
structures and algorithms. For the workload of OLAP scenarios, column stores like
MonetDB have a favourable memory layout, allowing sequential scans over contigu-
ous memory. When facing selection predicates for multiple columns, however, they
offer little to accelerate them. Multi-dimensional index structures such as kd-trees
attempt to improve on plain scans, but face the curse of dimensionality when many
columns are queried.

In this work, we integrate the multi-dimensional main-memory index structure Elf,
which does not suffer from said curse, into the DBMS MonetDB. Since Elf only
supports select queries, we provide interoperability with MonetDB’s query engine
and show various improvements of the naive approach. To enable real-world use, we
propose two competing approaches of querying string-typed columns with Elf. As
modern CPUs feature lengthy pipelines and out-of-order execution, we also explore
the possible trade-off between branching complexity and early termination for Elf
traversal.

Our experiments show that Elf can outperform the accelerated main-memory scans
of MonetDB, which improves further for larger datasets. However, the overhead
of string queries is not negligible and has to be considered when choosing between
the two. Additionally, the set of columns on which Elf is built should be kept to a
minimum; the performance worsens significantly if unaffected columns are included.

iv

Inhaltsangabe

Das Aufkommen von Hauptspeicher-Datenbanksystemen brachte das Bedürfnis nach
Cache-bewussten Strukturen und Algorithmen mit sich. ”Column stores” wie Mon-
etDB haben eine für OLAP-Szenarien vorteilhafte Speicheranordnung, welche se-
quenzielle Speicherscans ermöglicht. Allerdings bieten diese nur wenige Beschleu-
nigungsmöglichkeiten für mehrspaltige Selektionsprädikate. Um dies zu verbessern
wurden zahlreiche mehrdimensionale Indexstrukturen wie kd-Bäume vorgeschlagen.
Leider kämpfen diese aber mit dem Fluch der Dimensionalität, wenn viele Spalten
abgefragt werden.

In dieser Arbeit integrieren wir die mehrdimensionale Hauptspeicher-Indexstruktur
Elf, welche nicht von dem genannten Fluch betroffen ist, in das Datenbanksys-
tem MonetDB. Da Elf nur Selektionsabfragen unterstützt, stellen wir Methoden
zur Interoperabilität mit MonetDB’s Query Engine bereit und zeigen verschiedene
Verbesserungen dieser einfachen Ansätze. Um den realen Einsatz zu ermöglichen,
bringen wir zwei konkurrierende Ansätze zur Abfrage von Spalten mit String-Typ
ein. Da moderne CPUs lange Pipelines und Out-of-order Ausführung aufweisen,
erkunden wir auch den Konflikt zwischen Branching-Komplexität und frühem Ab-
brechen bei der Traversierung des Elf.

Unsere Experimente zeigen, dass Elf schneller als die beschleunigten Hauptspeicher-
Scans von MonetDB sein kann, was sich für größere Datensätze noch verbessert.
Allerdings sind die zusätzlichen Kosten von String-Abfragen nicht vernachlässigbar
und müssen bei der Wahl zwischen den beiden bedacht werden. Zusätzlich sollte
die Menge an Spalten, aus welchen die Elf-Struktur gebaut wird, auf ein Minimum
reduziert werden, da nicht betroffene Spalten die Leistung erheblich reduzieren kön-
nen.

Acknowledgements

I would like to thank my supervisor, David Broneske, for providing me both insight
into the topic as well as invaluable support throughout the thesis, for which I am
very grateful.

I would also like to thank Penny and Dennis for them supporting me and listening
to my complaints.

viii 0. Acknowledgements

Contents

Acknowledgements vii

List of Figures xii

List of Tables xiii

List of Code Listings xv

1 Introduction 1

2 Background 3
2.1 DBMS storage models . 3

2.1.1 N-ary storage model (NSM) 3
2.1.2 Decomposed storage model (DSM) 4
2.1.3 Alternative storage models . 4

2.2 MonetDB - A column-store DBMS 5
2.2.1 Data model . 5
2.2.2 Architecture . 6
2.2.3 MonetDB assembly language (MAL) 7

2.2.3.1 MAL type system 7
2.2.3.2 MAL operators and language framework 8

2.2.4 Optimization Pipeline . 9
2.3 Elf - A multi-dimensional query structure 10

2.3.1 Concept of Elf . 10
2.3.2 Optimized memory layout . 11
2.3.3 Construction . 12
2.3.4 Querying . 13
2.3.5 Update operations . 13

3 Integrating Elf into MonetDB 15
3.1 Storage of Elf . 15

3.1.1 Extending MonetDB’s SQL structures 15
3.1.2 Loading data into Elf . 17

3.2 Modifying MonetDB’s query execution pipeline 18
3.2.1 Parser extensions . 18
3.2.2 Relation and expression tree 19
3.2.3 MAL generation . 20

3.2.3.1 MonetDB’s MAL statements 20

x Contents

3.2.3.2 MAL bindings for Elf 22
3.2.3.3 Statement generation for SELECT statements 24

3.2.4 Query execution . 25
3.3 Storing non-integral values in Elf . 26

3.3.1 Index-mapping to obtain ordering 26
3.3.2 Resolving indexes at runtime 27

4 Query optimization for Elf 29
4.1 Merging different query types for traversal 29

4.1.1 Merging window queries . 29
4.1.2 Merging in-queries . 30
4.1.3 Merging column-column queries 31
4.1.4 Optimizing interop with MonetDB query execution 32
4.1.5 Distributively reordering where clauses 33

4.2 Optimizing Elf traversal . 34
4.2.1 Determining cut-off column for early termination 35
4.2.2 Small string optimization . 35

5 Evaluation 37
5.1 Evaluation setup . 37

5.1.1 Dataset and selected queries 37
5.1.2 Testing variants and expected results 39
5.1.3 Evaluation procedure . 41

5.2 Experiments . 42
5.2.1 Index-based vs. resolve-based 42
5.2.2 Comparison of optimizations 43
5.2.3 Small String Optimization . 46
5.2.4 Size scaling . 46

5.3 Discussion . 47
5.4 Threats to validity . 48

5.4.1 Internal validity . 49
5.4.2 External validity . 49

6 Related Work 51

7 Conclusion 53
7.1 Future work . 54

8 Appendix 55

Bibliography 69

List of Figures

2.1 Page-layout differences between NSM and DSM, taken from [ADH02] 4

2.2 Alternative storage models . 5

2.3 Mapping relational tables onto BAT s with materialized OIDs 6

2.4 MonetDB ’s two-layer architecture [BK99] 7

2.5 An exemplary relation and its representation in an Elf [BKSS17] . . . 11

2.6 Elf with implemented mono- and hash list and its in-memory repre-
sentation [BKSS17] . 12

3.1 Changes to MonetDB’s SQL structures to include Elf. Additions are
marked in blue . 16

3.2 Building on MonetDB’s bulk loader, we create an Elf via a temporal
buffer . 18

3.3 Expression tree of the where-clause ((A > B) and (C = D)) or (E

in (F, G) . 19

3.4 Mapping strings onto Elf values . 26

3.5 Indirection of BAT lookup is needed when storing strings without
mapping . 28

4.1 Joining together in and not in values for joined traversal 32

4.2 OID lists resulting from Elf queries need to be sorted before further
processing . 32

4.3 The two heuristics for ending early termination: dimension list size
and compactness of paths (in yellow) 35

5.1 Index- vs. resolve-based Elf query times 43

5.2 Query times for idx-min Elf on Q6 44

5.3 Query times of the index-based approach for Q12, Q6, Q19, and Q22
for scale factor 1 . 45

5.4 Comparison between base variant and SSO for custom query 46

xii List of Figures

5.5 Scaling of MonetDB and Elf approaches when increasing size 47

5.6 Query times for MonetDB and both minimal Elf variants with com-
bine and early termination (in order: MonetDB, index-based, resolve-
based) . 48

List of Tables

List of Code Listings

3.1 Keyword to specify Elf indexing . 19

3.2 Example SQL query to demonstrate MAL generation 20

3.3 MAL code generated by MonetDB for the SQL query in Listing 3.2
on page 20 . 21

3.4 MAL code for Elf for the SQL query in Listing 3.2 on page 20 22

4.1 Jump table implementation of the window type distiction 31

4.2 MAL code with merged query types for Listing 3.2 on page 20 33

4.3 lst:sort-projection . 34

5.1 Reduced query Q19 . 38

5.2 Synthetic query for SSO evaluation 38

8.1 MAL code of Q6 by MonetDB . 56

8.2 MAL code of Q12 by MonetDB . 57

8.3 MAL code of Q12 by MonetDB (cont.) 58

8.4 MAL code of Q16 by MonetDB . 59

8.5 MAL code of Q16 by MonetDB (cont. 1) 60

8.6 MAL code of Q16 by MonetDB (cont. 2) 61

8.7 MAL code of Q16 by MonetDB (cont. 3) 62

8.8 MAL code of Q19 by MonetDB . 63

8.9 MAL code of Q19 by MonetDB (cont.) 64

8.10 MAL code of Q22 by MonetDB . 65

8.11 MAL code of Q22 by MonetDB (cont. 1) 66

8.12 MAL code of Q22 by MonetDB (cont. 2) 67

xvi List of Code Listings

1. Introduction

The increasing amount of main memory in modern Database Systems brought about
a shift in focus for these systems. Formerly limited by their disk speed, the perfor-
mance bottleneck shifted upwards in the storage hierarchy towards main-memory
access [MBK00a]. Following this, utilizing the CPU cache became more important
to mitigate the limited bandwidth and access times of RAM, leading to the devel-
opment of cache-concious algorithms.

In analytical databases, one often encounters full table scans as an operation. While
data was traditionally split into pages to save disk bandwidth, main-memory database
systems do not need to perform such splits. However, the question of how table
data should be partitioned remains: a primarily transactional workload as found in
OLTP scenarios benefits from storing tuples compactly, while OLAP applications
often scan over individual attributes. Although wasting bandwidth is not a concern
for a main-memory DBMS, using a decomposed storage model increases its cache
friendliness for this use case by reducing the amount of irrelevant data per cache
line [MBK00a].

Neither of the two traditional storage models address the increasingly frequent work-
load of evaluating selection predicates on multiple columns. To accelerate attribute
scans, techniques such as column imprints [SK13] and BitWeaving [LP13] have been
proposed. While they are designed to be cache-friendly, both can only evaluate one
column at a time. Other approaches such as tree-based index structures do evaluate
multi-column predicates in one scan, but usually suffer from the curse of dimension-
ality ; their effectiveness decreases with increasing column count, eventually making
plain scans the preferable option.

The recently proposed Elf, a main-memory index structure, does not suffer from
this particular shortcoming. It achieves this by reducing the amount of data stored,
grouping together tuples with equal prefixes. Its design takes into account the CPU
cache, densely packing column values and stores them consecutively in memory. So
far, however, Elf has only been tested as a stand-alone structure in limited test
scenarios. To enable real-world usage and evaluate its performance, we integrate Elf
into the column-store DBMS MonetDB.

2 1. Introduction

Goal of this Thesis

Since MonetDB uses its own data structure to store and algorithms to process data,
swapping in Elf as a substitute is not a trivial task. The goal of this work is divided
into the following tasks:

• We integrate Elf into MonetDB as a secondary storage structure. This involves
the loading of data into Elf as well as executing queries on it. Since Elf does
not support joins and other operations, we also need to ensure that MonetDB
can continue to work with the results.

• Since the issue of storing strings in Elf has so far been circumvented by applying
dictionary compression, we explore different ways to natively support strings.

• We derive several improvements for the interoperability of Elf with the rest of
MonetDB. In this light we also theorize the influence of some of Elf’s features
on modern CPUs.

• We evaluate the impact of our improvements as well as how the Elf performs
in a real DBMS compared to memory scans.

Structure of this Thesis

To present our work, we structure the thesis as follows. In Chapter 2, we first present
different storage models and query types. We then introduce both MonetDB and
Elf as well as their relation to the issue of multi-column predicates.

We explain our base integration of Elf into MonetDB in Chapter 3. We show how
we interface Elf with their internal query language and showcase the different parts
of the system which need to be modified. We also discuss two different approaches
of dealing with strings in Elf. Following up, Chapter 4 introduces different options
of improving the interoperability between Elf and MonetDB with regards to query
execution.

In Chapter 5, we show the methods and results of our evaluation of the optimizations
compared to our base implementation. We then compare the query performance to
MonetDB’s own engine and discuss our findings. We finally conclude our work by
presenting related work in Chapter 6 as well as summarizing and proposing options
to continue future work in Chapter 7.

2. Background

The goal of this thesis is to integrate the main-memory structure Elf into the DBMS
MonetDB. In this chapter we first introduce the concept of different DBMS storage
and query types. Then we explain what issues Elf and MonetDB attempt to solve
and how they do that.

2.1 DBMS storage models

This section introduces a selection of storage models for relational DBMSs, meaning
how they organize their memory layout to store relations. Important in this context
are the two workload types OLAP (Online analytical processing) and OLTP (Online
transactional processing). OLAP represents common applications like data mining
where little to no updates on the data happen and columns are usually analyzed
separately [Pla09], whereas OLTP is mostly concerned with many changes across
multiple columns.

2.1.1 N-ary storage model (NSM)

In traditional relational DBMSs, tuples are naturally stored consecutively in a page.
In Figure 2.1a we show how each tuple is paired with a surrogate or tuple ID and
concatenated with its surrounding tuples [ADHS01], forming a row store. To ac-
commodate for variable tuple lengths, a typical implementation are slotted pages
[AMH08]. At the end of each page is a list with pointers for each tuple, which
avoids having to iterate through all preceding tuples

Row stores are well suited for OLTP queries [Pla09]. Slotted pages make inserting
tuples into not-full pages simple, while accessing a certain tuple only requires a scan,
possibly sped up with indices. Modifying individual attribute values of a found tuple
only needs access to a single page. However, row stores always load entire tuples,
even though that might not be necessary; computing an aggregate on one attribute
thus has to fetch the entire relation. This wastes I/O bandwidth and pollutes the
CPU cache, which usually relies on spatial and temporal locality to pre-fetch data
[SBKZ08].

4 2. Background

(a) Relation and page layout with NSM (b) The same relation stored
with DSM

Figure 2.1: Page-layout differences between NSM and DSM, taken from [ADH02]

2.1.2 Decomposed storage model (DSM)

To better accommodate OLAP access patterns Copeland and Khoshafian proposed
column stores [CK85]. Here, each relation is decomposed into its attributes. The
values of each attribute are then stored together as a column, alongside a surrogate
as its tuple or record ID. 2.1b shows the different memory layout compared to row
stores. To avoid the overhead of storing this ID for each column entry, densely
packed columns may omit them. Instead they are implicitly given by an entry’s
index [ABH09].

This storage model reduces the amount of disk I/O when only accessing a subset
of attributes. Since all values are consecutive in memory, CPU pollution during
sequential column scans is also not an issue [SBKZ08]. However, accessing individual
tuples or materializing intermediate query results needs to reconstruct tuples from
multiple columns, which should be delayed as long as possible [Aba08]. This requires
a join on the tuple IDs if a column is not dense anymore, for example due to a select.
Insert operations also need to touch multiple pages instead of only one, since all
columns need to be modified. This brings another issue: whereas inserting a tuple
into a row store does not have to move tuples around within pages, column stores
may need to insert attribute values at a certain index or lose a column’s density
property [ABH09].

Independent of the use case, columns make easier use of compression like run-length
or dictionary encoding due to their high data locality [Pla09] [Aba08]. Due to these
properties column stores are ideal for scenarios where updates on tuples are rare and
many operations operate on entire columns, like OLAP features them [SBKZ08].

2.1.3 Alternative storage models

Under the premise that neither column or row stores are suited for workloads com-
bining OLTP and OLAP known as hybrid transaction-analytical processing (HTAP),
Arulraj et al. propose a combination of both to mitigate the respective other’s weak-
nesses [APM16]. When tuples are first inserted into a database, it is more likely to
be accessed briefly after insertion than later on. They propose a tile-based stor-
age model illustrated by 2.2a, grouping data on both tuples and attributes. As the

2.2. MonetDB - A column-store DBMS 5

likelihood of individual tuple access decreases, the corresponding tiles shift towards
more narrow, OLAP -friendly storage.

Partitioned Attributes Across (PAX) is another hybrid model proposed by [ADHS01].
Here the base layout is that of a row store. However, as 2.2b shows, each tuple holds
multiple attribute values. This reduces cache pollution when scanning over individ-
ual attributes.

PAX pages are restricted in that attributes stay grouped, which may result in un-
needed data to be loaded. A generalized version called Data Morphing allows ar-
bitrary grouping of attributes within a page [HP03]. The HYRISE storage engine
uses a similar layout; however, its algorithm to find partitions differs [GKP+10].

(a) A physical FSM tile [APM16] (b) Multiple attributes in a PAX tuple
[ADH02]

Figure 2.2: Alternative storage models

2.2 MonetDB - A column-store DBMS

MonetDB is an open-source DBMS developed at the CWI (Centrum Wiskunde
& Informatica) and University of Amsterdam [BK94]. It was primarily designed
to handle data warehouse workloads and is based on a column-store architecture
[IGN+12]. To enable different applications MonetDB employs its own extensible
algebra, operating on basic primitives. This section provides an overview of Mon-
etDB ’s architecture and design.

2.2.1 Data model

MonetDB uses a decomposed storage model with the Gremlin Database Kernel at
its core. Each column of a relation is represented by a Binary Association Table
(BAT) [BK99]. Each BAT is made up of two columns labeled head and tail, storing
value pairs called binary unit (BUN). To hold differing values the tail column can
be parameterized on either built-in or user-specified types. The head column stores
the record’s object identifier, linking together BUNs belonging to the same original
tuple. Figure 2.3 shows an exemplary mapping of two tables, order and item, onto
six distinct BATs. The OIDs are assigned densely and in ascending order upon

6 2. Background

creation. Thus base BATs do not need to actually store the head column, instead
only providing an offset for the first record [IGN+12]. In such cases BATs consist
merely of their header and a traditional array. This lends BATs the typical cache
friendliness of column stores.

Figure 2.3: Mapping relational tables onto BAT s with materialized OIDs

To extend the built-in type system, MonetDB allows users to define custom atomic
types via an ADT system. These can be derived from existing types to simply provide
semantics or newly defined, in which case functions for conversion and internal
operations need to be defined [BK99]. These as well as other custom operators are
to be implemented in C and announced to the DBMS via bindings in its internal
query language (see Section 2.2.3). Fixed-length types are stored directly in the tail
column, whereas variable-length types such as strings are located in a heap instead,
with the tail holding an offset into it.

The necessary reconstruction of tuples from individual BATs is delayed as long as
possible [IKM09]. If the density property has not been violated the join only has
to perform an index lookup instead of a more costly alternative like hash-joining.
MonetDB can also use the cheaper lookup even when the participating BATs are no
longer dense, but the order of their BUNs is still aligned. This happens when the
executed operators are tuple-order preserving, like the relational select-operator.

2.2.2 Architecture

MonetDB architecture, as Figure 2.4 shows, consists of two layers separating query
processing and execution [BK94]. The top layer may be composed of multiple front-
ends responsible for communicating with application programs via TCP/IP and
mapping requests onto Monet’s internal query representation [BK99]. Front-ends
for, amongst others, SQL and XQuery exist [BGVK+06]. The bottom layer contains
components related to query execution. This includes the MAL interpreter and
optimizer (see Section 2.2.3), the database kernel, and the storage manager. It also
harbors a parallelization unit [GKS16]. [HSP+13] extends this to add hardware-
oblivious parallelism with the help of OpenCL.

2.2. MonetDB - A column-store DBMS 7

Figure 2.4: MonetDB ’s two-layer architecture [BK99]

The storage manager coordinates memory at BAT level with BAT buffer pools
[MBK00b]. Intended as a main-memory DBMS, BATs are always loaded completely
into memory or not at all if not needed. To still be able to operate on larger BATs
and relations beyond the main-memory capacity they are stored persistently us-
ing virtual memory [BQK96]. Large heaps may be mapped as memory-mapped files,
which are automatically loaded into main memory when an address mapped to them
is accessed; this is enabled with the page fault mechanism of paged operating sys-
tems. This allows dataset using most of the CPU-architecture’s address space. Since
certain access patterns may be predictable, mapped heaps can be marked to buffer
with different strategies such as pre-fetch or sequential. Both load succeeding pages
upon fault, but sequential also marks already accessed pages for swap-out to free
main-memory. For datasets just barely not fitting into main-memory, MonetDB also
relies on the operating system’s automatic page-swapping, if available [GVK+14].

2.2.3 MonetDB assembly language (MAL)

The glue between front- and back-end of MonetDB is the MonetDB assembly lan-
guage, in previous versions known as MonetDB interpreter language. It provides
every front-end a means to map its operations onto Monet’s logical model. To
achieve this it can be extended with user-defined modules containing custom types
and operators [BK99]. These may be loaded on startup or when needed.

The language structure can be split into the four categories atomic types, operators,
iterators, and accelerators which we address in the next sections.

2.2.3.1 MAL type system

MAL’s type system is close to that of its implementation language C [BK99]. The
types set up on the base types of MonetDB ’s Goblin Database Kernel (GDK). As
a base it offers the standard integer and floating-point types, complemented by a
128-bit integer type if the target architecture supports it. An arbitrary-pointer is
also present, although it is forbidden to store hard pointers to data in BATs to

8 2. Background

allow Monet to move them in memory (see [BK94]). These types are fixed in size
and as such are stored directly in a BAT’s tail column. The build-in string type is
not, instead it needs to be stored on the associated heap. This enables them to be
dictionary compressed by default, storing only the string’s index in the column.

All the mentioned base types of Monet directly map to types in C. To allow ad-
ditional types with semantic meaning, users may also define types which map to a
different MAL type. This helps communicating the purpose of variables and param-
eters (see Section 2.2.3.2). The kernel itsElf uses this to refer to BAT and object
identifiers, which are represented by the C types int and long int respectively. The
BAT type is specially treated: since a BAT is parameterized with two types for
its head and tail column, every parameterized BAT is a valid type as long as the
parameters themselves are valid types. The BAT identifier does not carry any of
this information; it is merely a cache ID, which can be used to retrieve the actual
BAT if needed.

In addition to the standard types MonetDB offers two meta-types: VOID and any.
To avoid unnecessary overhead, head columns for base BATs are only materialized
if necessary. To signal that a column is not (yet) materialized MonetDB uses the
type VOID (virtual OID). When an operation needs to break the denseness of a
BAT it creates a BAT containing OIDs in its tail column. Tail columns themselves
may also carry virtual OIDs, resulting in an effectively empty BAT.

The second meta-type is any. Since operators may accept more than one type of
data MAL allows the concrete type to be replaced by any, which also extends to
BAT type parameters. To also allow scenarios where the actual type is irrelevant
but two or more parameters must match in type, any may be numerated.

User-defined types are declared and made available to MAL in their respective mod-
ule. Unless they inherit their implementation from an already existing type they
must be accomplished by functions for converting them to and from string, reading
and writing to client streams, comparing and hashing them as well as what repre-
sents an unknown value. Additional functions to determine length and interact with
the heap are needed for variably sized types. Inclined users may also override the
book-keeping that MAL performs during runtime.

2.2.3.2 MAL operators and language framework

MAL operators exist in three flavors: functions, commands, and patterns. Func-
tions are written in MAL and may be implemented at runtime. Commands are
language bindings for C functions compiled alongside MonetDB. The MAL runtime
passes pointers to its stack which makes a call to them cheap. Patterns are also
implemented in C but get direct access to the MAL stack and other information
associated with the operator. This makes them more expensive to call but enables
features such as variable-length parameter or return lists. All three types may be
marked as unsafe, meaning that the operation performs changes to the database.
The MAL optimizer will then guarantee their order of execution [Ams97].

In addition to types, operators are also grouped in modules. These need to be
included by the runtime to enable access. Operators may be overloaded, meaning
they share the same name but differ in parameter count or types. Resolution of

2.2. MonetDB - A column-store DBMS 9

these overloads is performed at runtime [BK99]. They also support polymorphism,
enabled by the any type described earlier. The build-in operators of MonetDB
mostly wrap the functionality of GDK to interact with BATs and build-in types.

Iterators are provided in their own module as MAL hooks. They allow BATs to be
broken into smaller read-only views, which may be preferential for efficient processing
of large BATs. Accelerators for data structures need to be added manually to the
DBMS if necessary.

2.2.4 Optimization Pipeline

To improve the performance of complex queries MonetDB has three optimization
layers [IGN+12]:

• Strategical: This stage optimizes the query before it is transformed into
MAL. In the case of SQL it consists of heuristics to reduce its estimated cost
like executing select statements as early as possible to reduce the result size.
MonetDB may also construct indexes if it thinks they may be beneficiary.

• Tactical: The tactical optimizer works on generated MAL code. It can be
customized and is responsible for transforming the plan to suit the architec-
ture. Mitosis may fragment the database if it helps parallel processing, and
projections may be chained together to reduce the number of materializations.

• Operational: The GDK selects the actual algorithms used at runtime, such
as a merge-join over a hash-join if the attributes are sorted.

Since the focus of this work is on integrating an alternative query structure, we
give a brief overview of the concrete algorithms MonetDB uses for selects. The
basic fall-back algorithm is a memory scan, iterating all values in the BAT and
adding matching ones to the result BAT. There are a number of circumstances
where MonetDB can improve on this, however:

• Column imprints : MonetDB offers column imprints as a secondary index
structure [SK13]. Main-memory DBMSs are mostly concerned with utilizing
the CPU instead of disk I/O. To alleviate the issue of relatively slow main-
memory access, MonetDB creates bit vectors for each cache line of an indexed
BAT. Each bit indicates the presence of either a value or, if the domain cardi-
nality exceeds machine-word size, a range of values in its associated cache line.
This allows a scan to fetch relevant cache lines, which most likely would have
been done by the CPUs prefetcher anyway, and skip those without relevant
entries. However, column imprints only work for integral-type columns.

• Hash-select : When a query is looking for an exact match, MonetDB may
employ simple bucket-chained hashing. Theoretically, all column types would
be eligible; however, MonetDB restricts this to types with a size larger than 2
bytes on 64-bit systems. The select then performs a lookup in the hash table
and checks against all values in the respective chain.

10 2. Background

• Order-index : MonetDB offers to create an order index for columns, which
stores the indices of its elements as if they were sorted. This helps when
determining the lower and upper limits of the scan: a binary search may
quickly locate both. The same technique may obviously be applied if the
column is sorted to begin with, which may be the case for ID’s. If the entries
furthermore are dense, i.e. form a continuous sequence, the bounds can be
inferred without searching at all. Additionally, the result BAT is then not
materialized at all, only storing the bounds, while sorted BATs still need to
iterate the value range and at least preliminary store them in the result BAT.

MonetDB builds both column imprints and hash-index on the fly if not present,
but only for BATs which are persistent, i.e. permanently stored on disk. The
construction of an order-index has to be triggered manually due to its limited use
cases. The algorithms also change slightly when a candidate list is present, which
contains a set of acceptable OIDs: for sorted columns a list merge is necessary, while
the regular scans iterate both BAT and candidate list at the same time.

2.3 Elf - A multi-dimensional query structure
The alternative storage models explained in Section 2.1.3 all aim to increase query
performance for hybrid workloads by changing the layout. Additional techniques to
accelerate scans are not considered, they have to be implemented on top of them.
A common choice to speed up searches are indexes [SK13]. Primary indexes place
the data directly into a navigational structure leading to higher spatial locality for
relevant data but necessitating data duplication for each additional index, whereas
secondary indexes only reference the original data. The latter may incur significant
I/O overhead on disk-based DBMS to retrieve the actual data and cannot properly
prefetch relevant data.

Column imprints are only formed for a single column. This means that a query with
multiple predicates has to scan each column and combine them for the final result.
Other index types avoid this recombination by allowing multi-dimensional queries
directly. Both kd- and r-trees enable this by walking a tree-like structure and check-
ing against the predicates to descend further or discard branches [SBKZ08]. They
differ in what exactly they partition: while kd-trees split the data space recursively,
r-trees group together data points with bounding boxes. This class of indexes how-
ever suffers from the curse of dimensionality, meaning that the sub-spaces in their
leafs become increasingly sparse for higher dimensions and thus degrading their
effectiveness [BBK98].

All current tree-based approaches to reduce the influence of said curse only increase
the threshold for breaking even with a non-indexed scan. A common issue for them is
that instances are grouped by enclosing primitives, which inadvertently also contain
empty space. Broneske et al. proposed the Elf structure, which groups instances
without including empty space [BKSS17].

2.3.1 Concept of Elf

Elf is a tree-like data structure devised for main-memory DBMS. Unlike other in-
dexes like the r-tree it does not use geometric shapes to partition the indexed data

2.3. Elf - A multi-dimensional query structure 11

[BKSS17]. One of the core ideas of Elf is prefix redundancy elimination. This tech-
nique is also used by dwarf, a compressed structure for data cubes, in liaison with
suffix redundancy elimination [SDRK02]. Elf does not use the latter, which decreases
the storage size for sparse areas but increases query complexity.

Figure 2.5 contains an example relation transformed into an Elf to illustrate its
key features. Starting from the first dimension D1, Elf stores a sorted list of the
dimension’s unique values called dimension list. Each of them is accompanied by a
pointer to the next dimension list, holding only those values possible when consider-
ing tuples with matching values in previous dimensions. This way any possible path
in the Elf is unique and duplicate value prefixes of tuples are only stored once. At
the end of each path is the tuple ID of the original tuple.

Figure 2.5: An exemplary relation and its representation in an Elf [BKSS17]

Eliminating the prefix redundancy has two effects. For one it compresses the data,
reducing its memory footprint. In combination with the sortedness of dimension
lists it also helps with efficiently pruning subtrees during a query. Since both di-
mension lists and window queries are sorted possible query paths do not need to be
evaluated once a value larger or equal to the upper window bound has been seen
in the dimension list. Additionally, each path in the Elf has equal length, making
traversal predictable.

To avoid having data in the Elf that is not or only seldom used it may omit such
dimensions. They do not help with narrowing down the search space when traversing
the tree during a query and may even prevent relevant dimension lists from being
loaded into the cache. The original data can then be accessed using the stored tuple
ID.

2.3.2 Optimized memory layout

While the layout in Figure 2.5 reduces needed memory in lower dimensions it does
not effectively do so for higher ones. With increasing dimensionality the dimension
lists store less values. The worst case is only a single value per dimension list, which
happens once no other tuple has the same prefix. In that case no prefix redundancy
exists anymore. This actually increases the necessary memory compared to not
indexing, considering that each value needs a pointer for the next dimension list.
To address this issue Elf introduces monolists. Once a path is unique to one tuple
it no longer creates new dimension list. Instead the remaining values are stored

12 2. Background

consecutively in a list, complete with the tuple ID. This also partially addresses
another issue: dimension lists belonging to one path are not necessarily in the same
or neighboring cache lines, aggravating the problem of small dimension lists. Reading
a consecutive list increases the chances of prefetching by the CPU, even when it is
not aligned or confined to a single cache line.

Another possible bottleneck is the relatively large size of the very first dimension
list. Since no prefix redundancy elimination has taken place yet its worst case size
equals the number of tuples in the relation, which might all need to be scanned for a
query. However, Elf uses the fact that it only stores integers; other data types must
be transformed, possibly with dictionary encoding. Generally Elf assumes that the
first dimension is both ordered and dense, allowing its use as a perfect hash map.
This way query values act as a simple index into the hash list. Additionally it is
no longer required to store the actual values since they are implicitly given by their
indexes.

Figure 2.6: Elf with implemented mono- and hash list and its in-memory represen-
tation [BKSS17]

Another issue touched on before remains: while monolists are consecutive in memory,
a naive tree implementation with pointers does not make optimal use of caching and
results in repetitive cache misses for smaller dimension lists. The actual layout thus
discards pointers in favor of relative offsets. This also makes modifying operations
easier, since unaffected subtrees may stay completely untouched and can be copied
without issue. Figure 2.6 shows both the previous example equipped with mono- and
hash list as well as the in-memory layout. Offsets are marked with square brackets
and list endings with a minus sign. Offsets paired with a list ending indicate that
the following list is a mono- rather than a dimension list. Tuple IDs do not need
to be marked if duplicates are out of the question; otherwise they form monolists of
their own.

2.3.3 Construction

Construction of an Elf depends on whether the data is already present and complete,
which may be the case in OLAP scenarios. Although the optimized layout is better
suited for querying it is easier to insert new tuples into the original tree-like structure
(see Section 2.3.5). Thus it may be preferential for OLTP scenarios to keep two Elfs:
its insert-optimized (IElf) and query-optimized linearized (OElf) layouts. Tuples are
then first accumulated in the IElf by following its prefix into the Elf until no match
is found. Then a new entry is added to the first non-matching dimension list and
more are added to create the full path. If the full path is already present only the
tuple ID will be appended.

2.3. Elf - A multi-dimensional query structure 13

Following the insertion phase comes the linearization. If the data is already fully
present the data may be linearized directly. First the hash list is created; offsets are
left blank until the corresponding subtree is constructed. Then each dimension list
is inserted right after the previous entry, repeating recursively. In case of a solitary
path a monolist is created instead. When constructing the Elf directly the dimension
list also needs to be sorted.

2.3.4 Querying

Both IElf and OElf share the basic query algorithms. How the query is performed
depends on the type query:

• Exact-match query: First the hash list provides the offset by looking up
the first query value. Then each following dimension list is iterated until the
value is found; if it is not present the query is terminated, otherwise it descends
further. When it hits a monolist it is iterated in the same manner, terminating
on mismatch. The special cases for hash and monolist are not applicable for
IElf.

• Window query: Instead of terminating the query upon mismatch or finding
a tuple ID, each value falling into the window is followed up. Early termina-
tion is still possible once values cannot lie in the window anymore due to the
sortedness of dimension lists.

• Partial-match query: Dimensions marked as irrelevant do not check their
list values and simply act as if the window encompasses the entire domain.

Other query types require to keep track of more information. Checking against a list
of values per dimension (in-query) necessitates iterating both lists, which may also
terminate early if the values are sorted. To also handle queries comparing columns
to each other (column-column query) a query needs to keep track of previously
encountered values. Additionally the column comparison must be ordered so that
later dimensions get matched against earlier once so that the values are both in the
taken path segment.

2.3.5 Update operations

As already mentioned it may be wise for OLTP scenarios to keep both Elfs in parallel.
Inserting new tuples is only performed on the IElf. Once it grows large enough to
be a significant slowdown due to its worse cache layout and missing optimizations it
may be merged into the existing OElf. This operation is expensive since it requires
copying around subtrees to make room for new entries and dimension lists as well
as possibly breaking up monolists.

Updating tuples is so far an open problem, as changing values in the Elf may break
the sortedness of dimension lists or invalidate monolists. A similar problem exists
for deleting tuples.

14 2. Background

3. Integrating Elf into MonetDB

To benefit from the advantages of Elf, we present its integration into MonetDB in
this chapter. There are several reasons why we cannot completely replace BATs and
use Elf as the primary storage structure: first, Elf can only store integer types with
less than 32 bits. Since it also reserves the highest bit as an end-of-list flag, even
32-bit integers may not use their full domain. Thus we would require a secondary
storage structure for larger or non-integer types. Secondly, Elf so far only supports
a small set of queries natively, namely window or partial-match, in, and column-
column. It lacks algorithms for or - and any kind of cross-table queries such as join.
To still support all SQL queries we defer these to MonetDB’s original query engine,
which requires us to keep BATs as primary storage and treat Elf as an acceleration
structure only.

In this chapter we present the necessary modifications to MonetDB to accommodate
the Elf. This requires changes in both the storage and query modules. The latter
further breaks down into parsing, query transformation, and execution. Section 3.2
discusses the changes to these stages, while we consider how Elf gets stored in
Section 3.1. We explain the additional challenge of storing non-integer types in
Section 3.3 and consider optimizations to the base implementation in Chapter 4.

3.1 Storage of Elf

In this section we consider how and where to integrate the Elf within MonetDB’s
internals. Additionally, Elf needs to be constructed from data, which we cover in
Section 3.1.2.

3.1.1 Extending MonetDB’s SQL structures

The first design considerations for our implementation are what to index in an Elf
and where to store it. MonetDB divides its storage between the GDK and the SQL
layer. BATs reside inside the BAT buffer pool (BBP), which indexes them with a
BAT cache ID. To control if a BAT is in use, the BBP keeps track of logical and
physical references, keeping a counter for each of them. Physical references indicate

16 3. Integrating Elf into MonetDB

whether a BAT is loaded and actively in use, whereas logical references determine
whether a BAT still exists or can be removed entirely. The Elf itself does not need
access to BATs during querying if we restrict ourselves to directly indexable values,
but we need to retrieve them from the BATs at creation time (see Section 3.1.2).
MonetDB itself does not directly store BAT cache IDs for columns, but rather uses
sql delta, which encapsulates the base BAT alongside BATs containing inserts and
updates.

Since an Elf indexes a set of columns the natural assumption is to associate one
Elf with one relation. This restriction is not necessary from the Elf’s point of view
and may be lifted in the future to easily enable cross-table queries, it allows us to
make the Elf a part of MonetDB’s sql table structure, as shown in Figure Figure 3.1.
As the name suggests it represents an SQL table and contains its name, reference
counts, and internal information concerning the type of table. It also carries five
changesets for columns, indexes, keys, triggers, and members, each containing both
a list for present and deleted elements. The two relevant changesets are columns
and indexes. Indexes contain their name, type, parent table, and a list of columns
which are part of the index. Considering that we use Elf as an index we may utilize
this existing structure to indicate the presence of an Elf; however, we still need to
store a reference to the Elf structure. For other indexes such as the order index and
imprints MonetDB stores that information directly with the affected BATs. Since
the granularity of Elf structure is on a list of columns and as mentioned we restrict
it to one table we store a pointer directly in the affected sql table.

columns
indexes

sql_table

sql_column
table

sql_idx

type

columns

table

...
...

...

num_dims

data
size

elf

...

hashlist dimlist 1
dimlist 2

...

Linearized Elf

Index types

Imprints

Order index

...
Elf index

elfnr

elf

Figure 3.1: Changes to MonetDB’s SQL structures to include Elf. Additions are
marked in blue

An issue arises in the way MonetDB handles tables internally. The sql table structure
is not only used for persistent user tables, but also for system and transactional

3.1. Storage of Elf 17

ones. Thus allocating memory for Elf bookkeeping alongside table creation wastes
resources. One solution would be to check the type of table and only allocate for
non-system, persistent tables. Since one design goal is also selectively using Elf we
defer the allocation to actually requesting Elf (see Section 3.2.1). For duplicating
and destroying SQL tables we deep-copy or deallocate the Elf if it exists at all.

MonetDB stores information about a table’s column in the structure sql column.
Alongside information about the SQL type it keeps a reference to its parent table
and what its index is in the relation. Since we want Elf to index columns in a different
order and possibly not all columns we add the column’s index within the Elf as a
member. We set this index upon creating the Elf index. Unlike the SQL table we
do not have to worry about different column types, but we need to propagate the
index upon duplication.

To align Elf with existing indexes, we also introduce a new index type indicating
that an Elf index is present. This allows us to use the column list maintained by
MonetDB instead of having to iterate every column of the table and checking if it
has a non-negative index.

3.1.2 Loading data into Elf

Typical DBMS operations on a table include updating and deleting existing tuples
and inserting new ones. However, we cannot support the former two due to the lack
of (efficient) algorithms to change tuples present in a linearized Elf. Thus we focus
on inserting new tuples into Elf in this section.

SQL allows users to insert new tuples via the insert into statement, which may
contain multiple new rows. As an extension to this, MonetDB provides a copy

from statement, which loads tuples from a file into the specified table. To avoid
the issue of first accumulating tuples and later creating the linearized Elf, we move
the linearization to two points: first upon loading data with copy from, and second
when creating an Elf index when tuples are already present. Additionally, since the
lifetime of the Elf ends at the latest with the lifetime of the table’s object, we would
also have to re-create the index upon starting the system. This behavior may not be
desirable in all circumstances, primarily because Elf only resides in main memory.
Thus the Elf index has to be re-created when restarting MonetDB and is thus not
persistent.

The copy from statement is backed by the MAL binding copy from. To efficiently
load the tuples, MonetDB employs a bulk loader utilizing multiple threads. The
values are copied into the respective BATs, whose size is extended to accommodate
the new values. Figure 3.2 shows how we obtain the Elf from the loaded BATs. To
create the linearized Elf we need to sort the values repeatedly in different dimensions.
The GDK offers a built-in function to sort BATs, which optionally returns the
original order of elements. While this would be sufficient for fully sorting a number
of columns, we need to reorder a subset of the tuples when creating dimension lists in
deeper levels. Thus we copy the values from the BATs into a buffer and fall back to
qsort from the C standard libray for sorting. To copy the values in proper order we
obtain the order of columns from the index stored in sql column. We then iterate the
column’s BAT, copying integer values into the buffer; more complex types require

18 3. Integrating Elf into MonetDB

a different approach, which we detail in Section 3.3. The tight loop is subject to
compiler optimization and may be substituted by a regular memcpy (see [IGN+12]).
After filling the buffer, we linearize the Elf as described in [BKSS17].

File
column 1|column 2|column 3|
1|25|123|
2|0|104|
....

BAT

1
2
...

BAT
25
0
...

BAT

123
104
...

0
1

2

25
0

1
2

123
104

...

Temporary buffer
TIDBulk loading

hashlist dimlist 1

dimlist 2 dimlist 3

...

Elf

Linearization

Copy

MonetDB copy from Elf creation

Figure 3.2: Building on MonetDB’s bulk loader, we create an Elf via a temporal
buffer

The deallocation of Elf occurs upon either destruction of the index or its targeted
table, whichever occurs first. Since we do not provide persistency, we only deallocate
the memory and reset the indexes in the SQL columns.

3.2 Modifying MonetDB’s query execution pipeline

Implementing a different data structure within MonetDB requires modifications to
both its query and storage modules. The former consists of three stages: query pars-
ing, transformation, and execution. Since Elf is supposed to coexist with MonetDB’s
regular column stores we need to somehow express that a relation is supposed to be
stored with an Elf index. Considering its performance implications it also must be
able to specify which columns and in what order are to be indexed. Query transfor-
mation splits in two parts: building MonetDB’s internal structure from the parsed
query and translating that to executable MAL code. The actual execution of queries
does not need to interfere with the rest of the code base as the MAL bindings may re-
side in their own module. The following sections explain the necessary modifications
for each part of MonetDB.

3.2.1 Parser extensions

We need to communicate to MonetDB which table and which columns of that table
should make up an Elf. For this we need the support of MonetDB’s parser. Since
MonetDB supports different types of indexes already, each with its own keyword, we
make use of the create index statement. Listing 3.1 on the next page demonstrates
how to create a new table with Elf indexing. The injection of ELF specifies that Elf
is to be used instead of imprints or another index type. Following the table name

3.2. Modifying MonetDB’s query execution pipeline 19

CREATE TABLE table name (column1 type , column2 type , column3 type) ;
CREATE ELF INDEX idxname ON table name (column2 , column1) ;

Listing 3.1: Keyword to specify Elf indexing

comes a column list which specifies both what columns are indexed and in which
order.

The parser backend then saves the columns position in the sql column and allocates
the Elf structure. Since we do not have any data available yet we cannot allocate
the memory block for the index but rather initialize the bookkeeping structures.

3.2.2 Relation and expression tree

To translate the parsed SQL query into MAL, MonetDB uses several intermediate
representations. The first step is translating the operations into an expression tree.
It is composed of two structures, relations and expressions. A relation stores the
type of SQL statement as well as pointers to possible sub-statements. It also holds
information about whether it requires further processing to finish. To fully evaluate
the SQL statement, possible expressions in the where clause must be stored too.
This task is fulfilled by the expression type. It distinguishes between comparisons,
atomics, and other operations like aggregates. All expressions of a relation are stored
as a list.

Figure 3.3: Expression tree of the where-clause ((A > B) and (C = D)) or (E in

(F, G)

While not of direct interest for Elf, the generation of expressions is subject to Mon-
etDB’s optimization pipeline. An example of this are comparison expressions of
the form (A >= X) AND (A <= Y). MonetDB generally assumes the logical and to
be the normal operation between expressions within a list, while the logical or is
seen as a subexpression. Figure 3.3 shows the expression tree for an example query.
However, MonetDB’s select algorithm offers built-in support for range queries. This
is more efficient than the naive execution of two selects and an intersection of the
resulting TID lists. Thus MonetDB replaces such an expression with SQLs between
operator: A between X and Y. Elf can utilize this merging of individual expressions,
too; we go into detail about such optimizations in Chapter 4.

20 3. Integrating Elf into MonetDB

3.2.3 MAL generation

The core of MonetDB’s query engine is the MAL language. Any query will be
compiled into MAL statements before execution. These statements are not the same
as MAL bindings, rather they capture the intended binding and any dependencies
the call may have. Since we want to support both queries using Elf and BATs
we must consequently provide MonetDB with MAL bindings ourselves to interface
with its queries. In this section we present the MAL bindings and generation at the
example of a representative query shown in Listing 3.2.

SELECT sum(l d i s c o u n t)
FROM l i n e i t e m
WHERE (l l inenumber in (2 , 5 , 9))

and (l s h i p d a t e <= date ’ 1993−10−01 ’)
and (l s h i p d a t e <> l commitdate) ;

Listing 3.2: Example SQL query to demonstrate MAL generation

3.2.3.1 MonetDB’s MAL statements

Neither relations nor expressions translate directly into MAL bindings which can be
executed by MonetDB’s interpreter. Instead, queries in that form are translated into
MAL statements first. Each statement is equivalent to one or more MAL instruc-
tions. It stores the statement type, organizational data such as the result variable
ID, and pointers to the statements which it is directly dependent on: manually
adding a value to a BAT is directly dependent on the previous operation performed
on said BAT, down to its original creation. It also stores an instruction pointer.

The instruction pointer is the bookkeeping structure for MAL. It stores the function
and module names of the instruction as well as flags for control flow, garbage collec-
tion, and type analysis. It also keeps track of data relevant to the profiler, including
time spent on the instruction, and argument counts. In turn it keeps a reference to a
MAL block, which is the direct equivalent to a MAL binding. It stores the related C
function to call, the variables to pass, and additional data related to the optimizer.

As a baseline for comparison Listing 3.3 on the next page shows an excerpt from
an optimized MAL plan, generated by MonetDB. The sql statements are generally
performing catalog operations: sql.bind is responsible for binding the cache ID of a
column’s BAT to a MAL variable. On principal MonetDB binds all columns which
are part of the query. sql.tid creates a BAT containing the valid tuple identifiers
of the table. If it is not partitioned or tuples have been deleted this returns a
not-materialized BAT, since the valid TIDs are continuous.

The actual pieces of the query are performed by operators in the algebra and bat
module, which we aim to replace with Elf-specific ones:

• thetaselect takes a BAT and optionally a candidate list as well as a value
and a comparison operator. A candidate list is a BAT with possible OIDs.
It returns a BAT with the OIDs for which the comparison holds and is part

3.2. Modifying MonetDB’s query execution pipeline 21

1 X 12 : bat [: int] := s q l . bind (X 8 : int , "sys" : str , "lineitem" :
str , "l_linenumber" : str , 0 : int) ;

2 X 29 : bat [: date] := s q l . bind (X 8 : int , "sys" : str , "lineitem" :
str , "l_shipdate" : str , 0 : int) ;

3 X 36 : bat [: date] := s q l . bind (X 8 : int , "sys" : str , "lineitem" :
str , "l_commitdate" : str , 0 : int) ;

4 X 43 : bat [: bit] := bat ca l c . !=(X 29 : bat [: date] , X 36 : bat [: date
]) ;

5 C 9 : bat [: oid] := s q l . t i d (X 8 : int , "sys" : str , "lineitem" : str)
;

6 C 46 : bat [: oid] := a lgebra . s e l e c t (X 43 : bat [: bit] , C 9 : bat [:
oid] , t rue : bit , t rue : bit , t rue : bit , t rue : bit , f a l s e : bit) ;

7 C 51 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 29 : bat [: date] , C 46 :
bat [: oid] , "1993-10-01" : date , "<=" : str) ;

8 C 54 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 12 : bat [: int] , C 51 :
bat [: oid] , 2 : int , "==" : str) ;

9 C 57 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 12 : bat [: int] , C 51 :
bat [: oid] , 5 : int , "==" : str) ;

10 X 58 : bat [: oid] := bat . mergecand (C 54 : bat [: oid] , C 57 : bat [:
oid]) ;

11 C 60 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 12 : bat [: int] , C 51 :
bat [: oid] , 9 : int , "==" : str) ;

12 X 61 : bat [: oid] := bat . mergecand (X 58 : bat [: oid] , C 60 : bat [:
oid]) ;

13 X 22 : bat [: lng] := s q l . bind (X 8 : int , "sys" : str , "lineitem" :
str , "l_discount" : str , 0 : int) ;

14 X 63 : bat [: lng] := a lgebra . p r o j e c t i o n (X 61 : bat [: oid] , X 22 :
bat [: lng]) ;

15 X 66 : hge := aggr . sum(X 63 : bat [: lng]) ;

Listing 3.3: MAL code generated by MonetDB for the SQL query in Listing 3.2 on
the facing page

of the candidate list. The thetaselect in line 7 performs l shipdate <= date
’1993-10-01’, while those in lines 8, 9, and 10 perform l linenumber in (2, 5,
9).

• select also takes a BAT and a candidate list. Instead of a comparison, however,
it takes two values, forming a window. In this case it is coupled with the
batcalc.!= statement, which performs the column-column query l shipdate <>
l commitdate and returns a bit mask, indicating unequal values. The select
then simply creates a BAT listing all OIDs for which the value is unequal.

• mergecand merges together two candidate lists. The generated thetaselects
each only check for one value; thus the resulting OIDs must be merged to get
the final result.

22 3. Integrating Elf into MonetDB

• projection in line 14 takes a BAT and a candidate list and returns a BAT with
only the values with matching OID. This effectively gives us the query result.

Since the query asks for the sum of l discount MonetDB aggregates the resulting
BAT in line 15. The result is then processed and sent to the client, which we leave
out since we do not touch this part.

3.2.3.2 MAL bindings for Elf

To illustrate the MAL bindings for Elf, Listing 3.4 shows the same SQL query
generated to use the Elf as much as possible. In this section we will walk through
the newly added bindings.

1 X 43 : e l f q u e r y := e l f . c r ea t e que ry (0 x3 : ptr) ;
2 X 47 : e l f q u e r y := e l f . add co l c o l que ry (X 43 : e l f que ry , 0 : int ,

2 : int , 5 : int) ;
3 X 49 : bat [: oid] := e l f . s e l e c t (X 47 : e l f q u e r y) ;
4 e l f . de s t roy query (X 47 : e l f q u e r y) ;
5 X 51 : e l f q u e r y := e l f . c r e a t e que ry idx (0 x3 : ptr) ;
6 X 55 : e l f v a l := e l f . num2el fval ("1993-10-01" : date , 21 : int) ;
7 X 57 : e l f q u e r y := e l f . add window query (X 51 : e l f que ry , 0 : int ,

2 : int , X 55 : e l f v a l) ;
8 X 58 : bat [: oid] := e l f . s e l e c t (X 57 : e l f q u e r y) ;
9 e l f . de s t roy query (X 57 : e l f q u e r y) ;

10 C 76 : bat [: oid] := bat . i n t e r s e c t c a n d (X 49 : bat [: oid] , X 58 : bat
[: oid]) ;

11 X 59 : e l f q u e r y := e l f . c r e a t e que ry idx (0 x3 : ptr) ;
12 X 64 : e l f v a l := e l f . num2el fval (2 : int , 8 : int) ;
13 X 65 : e l f q u e r y := e l f . add in query (X 59 : e l f que ry , 1 : int , X 64

: e l f v a l) ;
14 X 69 : e l f v a l := e l f . num2el fval (5 : int , 8 : int) ;
15 X 70 : e l f q u e r y := e l f . add in query (X 65 : e l f que ry , 1 : int , X 69

: e l f v a l) ;
16 X 73 : e l f v a l := e l f . num2el fval (9 : int , 8 : int) ;
17 X 74 : e l f q u e r y := e l f . add in query (X 70 : e l f que ry , 1 : int , X 73

: e l f v a l) ;
18 X 75 : bat [: oid] := e l f . s e l e c t (X 74 : e l f q u e r y) ;
19 e l f . de s t roy query (X 74 : e l f q u e r y) ;
20 C 81 : bat [: oid] := bat . i n t e r s e c t c a n d (C 76 : bat [: oid] , X 75 : bat

[: oid]) ;
21 . . .
22 X 83 : bat [: lng] := a lgebra . p ro j e c t i onpa th (C 81 : bat [: oid] , C 9

: bat [: oid] , X 22 : bat [: lng]) ;

Listing 3.4: MAL code for Elf for the SQL query in Listing 3.2 on page 20

In the first line we create a new structure elfquery. Since MonetDB does not resolve
query values until runtime, we need to communicate not only the type of query but

3.2. Modifying MonetDB’s query execution pipeline 23

also its possible values to MAL. However, fully specifying the type as an atom would
be overkill; we do not need to compute its hash or compare it, as it simply holds
the current query. Instead, elfquery inherits from pointer and gets defined in C,
containing the following:

• Elf pointer: Direct memory reference to the table’s Elf object.

• Window boundaries: For a window query we need the upper and lower limit
as well as the column it is targeting. This is implemented as a simple array,
marking affected columns with true.

• In-list: For in expressions we store a vector with the query values alongside
an indication of the column and whether it is in or not in.

• Column-column comparison: This part stores both columns to query as
well as the comparator.

The query is initialized by the binding elf.create query, which takes a pointer to an
Elf structure. In this we allocate arrays indicating the comparison type for each
dimension, but not the members which hold the values themselves. This part is left
to elf.add window query, elf.add in query, and elf.add col col query.

• elf.add window query (line 7) takes a single value, a dimension, and a compar-
ison operator and initializes the query to form a window matching the inputs.

• elf.add in query (line 13) adds a new value for an in-query. Unlike the other
two it may be called multiple times, each time adding a value to the query
list. However, this may only happen for the same dimension.

• elf.add col col query (line 2) takes two dimensions and a comparison operator
for a column-column query.

After adding the desired query, the call to elf.select executes the query and returns,
similar to MonetDB’s equivalents, a candidate list. After execution the query gets
destroyed in elf.query destroy. Since each select only computes part of the query,
we also need intersectcand (lines 10 and 20) to obtain the proper OID list.

Beside elfquery we additionally introduce the type elfval. We use it to convert be-
tween SQL values and what we store in an Elf, which are 32-bit unsigned integers.
While we could pass query values as untyped values into the query operators, we
would need to also pass its original type or risk violating C’s strict aliasing rules,
which forbid accessing values through a pointer of a different type ([HER15]). In-
stead we introduce a polymorphic MAL binding num2elfval, which calls the appro-
priate C function to perform the cast. It also comes in a variant taking any value
plus its type (line 6). We require this for values which are directly of integral type
but rather derived from one, such as date, which has its own atomic type but is
stored as a simple integer. In these cases the MAL interpreter does not call the
binding with the integral type and sees the program as ill-formed. To avoid issues

24 3. Integrating Elf into MonetDB

with strict aliasing when using elfval, we also implement the functions MonetDB
expects for atomic types to be present, such as comparison and hashing as well as
string parsing.

To obtain the result BAT, MonetDB can no longer use algebra.projection, as it does
in Listing 3.3 on page 21. The reason for this is that algebra.select takes the possible
TIDs as a candidate list. As such it no longer needs to be projected onto the result
BAT. Since the TIDs in Elf are not ordered it is not as efficient to take a candidate
list into consideration as it is for BATs, which inherently are ordered and densely
headed. Considering that the additional projection in algebra.projectionpath for
the likely not-materialized TID BAT is relatively cheap, we decided to not include
candidate lists into Elf queries.

3.2.3.3 Statement generation for SELECT statements

Since Elf only supports selection we focus on the translation of select statements
into MonetDB statements. The primary function of interest is rel2bin select. It
takes a relation and returns a list of statements which, once executed, perform
selects on the underlying BATs. To enable nested queries it may call the entry
function recursively. It then iterates over the expressions given in the relation and
evaluates them in the function exp bin, which returns a single statement and takes
both the optional sub-statements from nested queries as well as the statement which
was generated in the previous iteration.

To generate an Elf query instead we first check whether the SQL table on which the
select operates has any columns indexed. Selects with more than one table in the
where clause are split into independent relations by MonetDB, so we evaluate them
one at a time. We then iterate over the expression list, too, whilst calling a modified
version of exp bin. Additionally, we need to merge the OID lists which will result
from an Elf query. MonetDB deals with this by using previous candidate lists. Each
select operation on a BAT may be accompanied by another BAT, which shrinks the
search space for possible OIDs. This does not make sense for Elf; since we do not
operate on BATs we cannot abuse possible density properties. Instead we resort to
simply intersecting the resulting OID BATs. To still enable operations that are not
carried out on an Elf, such as aggregates, we carry along the generated statement
in the same manner as before.

To interpret the expressions is rel bins task. It distinguishes between seven expres-
sion types: PSM, atom, conversion, function, aggregate, column, and comparison.
PSM handles execution of stored SQL procedures, while function and aggregate
deals with SQL functions and built-in aggregates. Of interest for Elf are the remain-
ing four. Column resolves the SQL column name to MonetDB’s internal structure
and the associated BAT. It also emits statements to update the BAT to reflect any
changes in the current transaction. Along with atom/conversion, which bind query
values or function results in need of type conversion to MAL variables, it enables us
to access the BATs to lookup query values and the column which the column has in
the Elf.

Expressions of type comparison are furthermore divided by the comparison type. We
limit ourselves to those of type or, in, and regular comparisons. While MonetDB

3.2. Modifying MonetDB’s query execution pipeline 25

also supports SQLs like, it does not have a direct translation to an Elf query due to
its wildcards. Along with joins we leave the statements which MonetDB generates.
This leaves us with four cases we do handle:

• Or: Since expressions in one list are implicitly connected by and, parts of the
where clause connected via or are implemented as a list of sub-expressions.
(A and B) or C thus results in a list containing a single expression of type
or, which in turn contains two expression lists, one for each side of it. Thus
MonetDB performs roughly the same task as for the top-level expression list,
which we replace with Elf query creations in the same manner as before. We
then form the union of the resulting BATs from the two sub-expression lists
for both Elf and MonetDB’s statements.

• In: In and not in expressions come with a list of expressions containing the
values for the value set. MonetDB iteratively selects matching entries from the
BAT, unifying the results. Since Elf natively supports in-queries we do not
need to create multiple queries. Instead we issue a MAL statement to add the
resolved query value to a list, which we will then use to find matching OIDs
in one traversal.

• Window query: To deal with queries of the form A θ B where θ ∈ {=, <,>
,<=, >=}, we keep tabs of a lower and upper boundary for each query column.
For equality, both boundaries have the same value. In the case of unbounded
comparisons we choose the minimum/maximum values the Elf can hold as the
boundary. We also handle between in the same way, since it naturally gives
us both limits. A special comparator is 6=: there exists no way to encode it in
a window query of this type. To solve this we change it into a single-element
not in.

• Column-column query: Elf provides support for inter-Elf comparisons be-
tween columns. Thus we only add the comparison type and the queried
columns to the query.

3.2.4 Query execution

As a preparation we first consider the type of query. In case of an in-query we need to
sort the values, because it allows Elf to terminate earlier when matching dimension
lists. Next the query creates a BAT to store the OIDs in. We then choose the
appropriate query function depending on what has been added to the query prior.
During the query we add OIDs matching the query to the BAT. Unfortunately
we need to grow it dynamically, since Elf does not feature a suitable heuristic for
an upper limit of matching OIDs, whereas MonetDB uses the sizes of the BAT and
candidate list. To avoid too many small allocations while keeping we allocate a BAT
with one million entries or the number of entries in the Elf, whichever is smaller;
MonetDB uses this heuristic when it cannot obtain a more accurate estimate (see
function BATselect in gdk select.c).

As we mentioned, Elf does not impose any order on the stored OIDs. However,
MonetDB expects candidate lists to be sorted, since its own functions mostly pre-

26 3. Integrating Elf into MonetDB

serve tuple order. Thus we need to sort the OIDs before passing it back to the MAL
runtime as a result.

3.3 Storing non-integral values in Elf

In the original implementation in [BKSS17], Elf only stores 32-bit unsigned integers.
However, a DBMS generally wants to store other types such as strings or big integers
as well. Thus we need to provide some form of mediation to allow these types to
also be indexed.

A naive approach is to simply use the index of a value in its BAT. This works fine
when only considering queries checking for equality. However, this does not work for
window queries in general and, upon closer inspection, does not function with Elf’s
early termination approach when querying. The reason for this is that MonetDB
does not necessarily store values sorted in BATs. Thus the order of indexes does not
necessarily reflect the order of the values they represent. We propose two solutions
to this problem: index-map and resolve-comparison.

3.3.1 Index-mapping to obtain ordering

Index-map keeps the Elf querying the same. To get an integral value for non-integral
types we create a mapping of continuous indexes to the values’ actual indexes in
the BAT. To achieve this we extend the sql column structure by a BAT cache ID,
which points to the BAT containing the mapping. Its creation happens before
filling the temporal buffer used for linearizing the Elf: when a column’s type is non-
integral or too large to be stored in the Elf directly, we create a sorted BAT and the
corresponding order BAT. For each unique entry we then store the original index,
obtained from the order BAT, in the mapping.

However, this alone does not account for values which are not present in the original
BAT at all. Figure 3.4a demonstrates the problem of string sequences which are
not dense. They cannot be resolved to such an index during query time. In fact
there cannot exist an fixed-size index-like string representation without this issue:
assuming a cardinality of X we may only map X strings without duplicate index
assignment.

(a) The issue of storing strings by
index in the Elf

(b) Clamping absent values to near-
est neighbor for window queries

Figure 3.4: Mapping strings onto Elf values

3.3. Storing non-integral values in Elf 27

Figure 3.4b shows a solution to this problem. Instead of obtaining an index for
the value itself, we combine the index resolution with the comparison operator in
question. In a less-than query, there is no difference between using the upper bound’s
index minus one and the index of the next lower value. Consquently, for the queries
A > X and A >= X the next lexicographically smaller string serves as the index,
and the next greater one equivalently for A < X and A <= X. An edge case occurs
when the query value is smaller than all stored BATs, in which case we may need
an index smaller than 0. To avoid this indices are incremented by one before being
stored in the Elf, hence the entry ’America’ now starts at index 1. Unfortunately
this requires iterating the entire BAT to find such a suitable replacement.

To resolve query values at runtime we introduce two new MAL bindings as well as
the idxquery type to distinguish it from the second solution in Section 3.3.2.

• bind index map properly binds the BAT containing the index mapping.

• resolve bat index map takes both a storage and an index-map BAT as well as
a comparison operator and the value to look up. It then returns an Elf value
following the schema in Figure 3.4b.

This solution has a large performance penalty for looking up query values. However,
since queries are normally executed there is no additional overhead for elf.select.

3.3.2 Resolving indexes at runtime

The second option requires that indices need to be resolved when being compared
during Elf traversal. This is a relatively inexpensive operation since the indices grant
direct access to MonetDB’s heap. Instead of comparing only integers, however, Elf
now needs to compare strings. Not only is this more costly itself, accessing the BAT
also pollutes the cache. Additionally, it adds more branching to the Elf traversal,
since we need to distinguish between string and non-string columns, putting pressure
on the CPUs branch predictor. However, this approach does not have the upfront
cost of a BAT traversal for each query value.

Similarly to the first solution, we add the type resquery to differentiate between the
two. We do not require new MAL bindings; however, we need to change both the
way Elfs are created and executed. Instead of integers the query and the temporal
buffer now store ValRecords, which is the structure MonetDB uses for values whose
type it cannot establish at compile time. However, we still store the value’s indexes
in the Elf. As Figure Figure 3.5 shows, we now perform a a lookup in the BAT
during Elf traversal to perform comparisons if the type is non-integral.

This approach has some downsides. For one, we now need to bring the BAT of
every queried column into the traversal. More importantly, we can no longer treat
the first Elf dimension as a hashlist since the indexes are not guaranteed to be in
order. According to [BKSS17] this removes a large advantage of Elf.

28 3. Integrating Elf into MonetDB

5 3 ...2

America

Middle East

Australia

Africa

Europe

...

BAT

Dimlist

Lower bound

Upper bound
A

Bri

Comparison

Lookup

Figure 3.5: Indirection of BAT lookup is needed when storing strings without map-
ping

4. Query optimization for Elf

It is generally expected of DBMSes to perform their given task as quickly as pos-
sible. Thus it is of utmost importance that their implementation employs fast and
optimized algorithms and minimizes overhead. The Elf structure already offers opti-
mized traversal. Consequently, the largest optimization possibilities lie in the layers
joining MonetDB and Elf together. In this chapter we take a look at how to improve
our baseline implementation in Chapter 3.

4.1 Merging different query types for traversal

In the previous chapter, we presented MAL code generated from the example query
in Listing 3.2 on page 20. Looking at the MAL code using Elf in Listing 3.4 on
page 22 we can see that every condition from the where-clause corresponds to one
Elf query (see lines 1, 5, and 11). This does not really cater to the main strengths
of Elf, which is cache-concious traversal. After every traversal the cache will no
longer contain the initial dimension lists, assuming that the Elf in its entirety does
not fit into the CPUs cache. In [BKSS17], partial-match queries are already used
and their construction trivial: assuming two initial boundaries, successive narrowing
for the respective comparison operators results in a window for each column. Since
this was used in the original paper’s benchmarks, we consider this our baseline
implementation. However, merging the traversal of different query types is not as
straightforward; we discuss the concrete implementations in the following sections.

4.1.1 Merging window queries

Before we take a look at how to traverse a query with multiple types, we first need
to look at how to merge them together. While it is trivial to merge a window with
an in query, ignoring the need to pass along the values, merging queries of the same
type is not as easy.

For window queries, we may simply adjust the boundaries to the newly added min-
imum/maximum. However, this only works when storing integers in the Elf. The
solution for storing strings and larger integers from Section 3.3.2 does store integers,

30 4. Query optimization for Elf

but they do not need to be ordered as they get resolved at runtime. Hence we
store the actual query values instead of integers. This does not cooperate with the
current way Elf checks if a dimension-list value falls into a window; it assumes that
the boundaries are inclusive. For comparisons of type A ≤ B however, we cannot
simply change it into an inclusive boundary. For positive integers, the comparison is
equivalent to A ≤ B − 1 as long as B 6= 0, for which the comparison is always false.
While a similar adaptation would work for strings, considering that lexicographical
ordering maps them onto continuous integers, this becomes cumbersome for floating-
point numbers. Taking into consideration that changing a string to its next higher or
lower value depends on the encoding and may even require reallocation, a different
approach is to change the way we perform a window query. Instead of only storing
if a column has a window query, we store what type of window query to expect.
Thus, when evaluating against a window query at runtime, we have 9 possibilities:
one for each combination of ≥ or ≥ and ≤ or ≤, respectively, as well as non-existing
boundaries. This also alleviates us from having to specify a nil element.

This differentiation into different window types necessarily leads to an increase in
branching as a trade-off for increased flexibility. Inspecting the generated assembly
in Listing 4.1 on the facing page reveals that GCC 7.1 implements the switch-
statement as a jump table: in line 4 the case of no window query is handled by
jumping past the table, while the actual jump into the table occurs in line 13.
This means that before the actual comparison takes place we perform an indirect
jump, hoping that the branch prediction masks most of the performance penalty.
We investigate whether this has a significant impact on the query performance in
Chapter 5. For readability purposes we compiled the presented assembly without
optimizations enabled; while the index computation gets improved, the concept of
a jump table is unchanged.

4.1.2 Merging in-queries

To support queries asking for specific values to be present rather than a range of
values, we provide an Elf query with a list of values for each column which is then
traversed alongside the respective dimension lists. Merging together two concurring
in-queries is simple: if the column already has a list, we intersect it with the new one.
However, their complement in the form of not in queries requires more precaution,
as shown in Figure 4.1: if a list is already present, but for an in-query, we need to
remove all values which are present in both. This procedure is also necessary in the
inverted case.

We now illustrate the general algorithm for traversing a dimension list for which both
an in- and partial-match query is specified. To check as little values as possible
during traversal, we run along the value lists of the query in lockstep with the
dimension lists. There are now three termination conditions: the dimension list
ends, the list of in-values ends or we exit the window. Since both lists are sorted,
we may compare the current values for each one and check for equality. There is a
slight difference when we have not in values: finishing the list is not a termination
criterion, but we only need to check if the dimension lists lie within the window after
it is over.

4.1. Merging different query types for traversal 31

1 .window match res :
2 . . .
3 movl (%rax) , %eax
4 cmpl $31 , %eax
5 ja .L34
6 movl %eax , %eax
7 l eaq 0(,%rax , 4) , %rdx
8 l eaq .L36(%rip) , %rax
9 movl (%rdx,%rax) , %eax

10 movslq %eax , %rdx
11 l eaq .L36(%rip) , %rax
12 addq %rdx , %rax
13 jmp ∗%rax
14 . s e c t i o n . r oda ta
15 .a l ign 4
16 .a l ign 4
17 .L36 :
18 . l o n g .L35−.L36
19 . l o n g .L34−.L36
20 . l o n g .L34−.L36
21 . l o n g .L37−.L36
22 . . .

Listing 4.1: Jump table implementation of the window type distiction

4.1.3 Merging column-column queries

Column-column queries in Elf are realized by associating a column with both a
comparison operator and the index of the column to compare it with. As such we
limit ourselves to supporting column queries for different dimensions; supporting
multiple comparisons per column would increase both complexity of the traversal
and memory consumption per query. Seeing as column-column queries within one
table are relatively rare, we decided this to be out of scope and it thus requires
merging OID lists instead.

We support the six common comparison operators, each with its own unique ter-
mination criterion: for less, equal, and less-or-equal we may stop traversal once
reaching a value larger or equal than the target value. Greater and greater-or-equal
cannot be terminated early, but the check may be dropped once the threshold is
reached, removing branching from loop.

Combining this with both window and in-queries increases the complexity quite a
bit. While the number of termination criteria does not change, we need different
traversal loops depending on whether the column comparison has been met or not,
the value list is over or the dimension list values passed the lower window boundary.

Listing 4.2 on page 33 shows the MAL code when merging together the different
queries. Not only is there only one traversal in line 11, but there is also less overhead
in the form of query creation. We also no longer need to intersect OID lists; in this

32 4. Query optimization for Elf

Figure 4.1: Joining together in and not in values for joined traversal

concrete example we do not intersect at all, since there is no part of the query not
handled with the Elf.

4.1.4 Optimizing interop with MonetDB query execution

A big part of integrating Elf into MonetDB is the coexistence with it already-present
query engine. The main part of this is fusing the OID list resulting from an Elf query
with the results of possible other queries. In Listing 3.4 on page 22 this happens
in lines 10 and 20, although in that specific case we fuse OID lists from individual
Elf queries. MonetDB uses the function bat.intersectcand to intersect candidate
lists. This does, however, come with the requirement that the input lists are sorted.
Unfortunately, Elf does not store TIDs as such. Thus, we have to sort the OID list
before passing it into the intersection function, as shown in Figure 4.2.

Figure 4.2: OID lists resulting from Elf queries need to be sorted before further
processing

While it is sensible for MonetDB to operate with candidate lists, since their oper-
ations for the most part retain tuple order, the additional cost of sorting the OIDs
makes Elf infeasible for queries with larger results. While Elf shines in scenarios
with low selectivity, this may still result in large numbers of OIDs. To alleviate
some of that cost, we instead stop seeing the query result as a candidate list and
instead as a regular BAT. MonetDB then allows us to use algebra.intersect, which
determines the best algorithm to use at runtime. This does not directly produce a
usable OID BAT; instead it returns the OIDs of the original OID BAT which have a

4.1. Merging different query types for traversal 33

1 X 43 : idxquery := e l f . c r e a t e que ry idx (0 x3 : ptr) ;
2 X 47 : idxquery := e l f . add co l c o l que ry (X 43 : idxquery , 0 : int ,

2 : int , 5 : int) ;
3 X 51 : e l f v a l := e l f . num2el fval ("1993-10-01" : date , 2 : int , 21 :

int) ;
4 X 53 : idxquery := e l f . add window query (X 47 : idxquery , 0 : int ,

2 : int , X 51 : e l f v a l) ;
5 X 57 : e l f v a l := e l f . num2el fval (2 : int , 8 : int) ;
6 X 58 : idxquery := e l f . add in query (X 53 : idxquery , 1 : int , 8 :

int , X 57 : e l f v a l) ;
7 X 62 : e l f v a l := e l f . num2el fval (5 : int , 8 : int) ;
8 X 63 : idxquery := e l f . add in query (X 58 : idxquery , 1 : int , 8 :

int , X 62 : e l f v a l) ;
9 X 66 : e l f v a l := e l f . num2el fval (9 : int , 8 : int) ;

10 X 67 : idxquery := e l f . add in query (X 63 : idxquery , 1 : int , 8 :
int , X 66 : e l f v a l) ;

11 X 68 : bat [: oid] := e l f . s e l e c t (X 67 : idxquery) ;
12 X 8 : int := s q l . mvc () ;
13 C 9 : bat [: oid] := s q l . t i d (X 8 : int , "sys" : str , "lineitem" : str)

;
14 X 22 : bat [: lng] := s q l . bind (X 8 : int , "sys" : str , "lineitem" :

str , "l_discount" : str , 0 : int) ;
15 X 70 : bat [: lng] := a lgebra . p ro j e c t i onpa th (X 68 : bat [: oid] , C 9

: bat [: oid] , X 22 : bat [: lng]) ;
16 X 73 : hge := aggr . sum(X 70 : bat [: lng]) ;

Listing 4.2: MAL code with merged query types for Listing 3.2 on page 20

match. Thus we need an additional projection to obtain the final result. Listing 4.3
on the next page shows the new MAL code for intersecting result BATs. However,
this approach may not prove to be beneficial if the result set is sufficiently small,
in which case the overhead of generating extra MAL statements and MonetDB’s
checks for deciding on a concrete algorithm may dominate. We will thus consider
both approaches in the evaluation (see Chapter 5).

The resolve-variant to enable string storage in so far requires the presence of all BATs
during traversal to resolve the stored indices to their actual values. This is somewhat
suboptimal; MonetDB’s data-flow analyzer has to assume that we use the BATs and
thus may be prevented from reordering MAL instructions more favourably. This
would be especially beneficial in a multi-core setting, since independent instructions
may be executed in parallel. Since we can track which columns actually take part
in a query, we simply withhold those that are not required from the selection.

4.1.5 Distributively reordering where clauses

Assuming that we merge together queries, our goal is to traverse the Elf as little
as possible. However, certain queries prevent us from merging altogether: where
clauses combined with or. Similar to unmerged and clauses, we have to form the

34 4. Query optimization for Elf

1 . . .
2 X 75 : bat [: oid] := e l f . s e l e c t (X 74 : e l f q u e r y) ;
3 e l f . de s t roy query (X 74 : e l f q u e r y) ;
4 C 81 : bat [: oid] := a lgebra . i n t e r s e c t (C 76 : bat [: oid] , X 75 : bat

[: oid] , n i l : bat , n i l : bat , f a l s e : bit , n i l : lng) ;
5 C 82 : bat [: oid] := a lgebra . p r o j e c t i o n (C 81 : bat [: oid] , C 75 :

bat [: oid]) ;
6 . . .
7 X 83 : bat [: lng] := a lgebra . p ro j e c t i onpa th (C 82 : bat [: oid] , C 9

: bat [: oid] , X 22 : bat [: lng]) ;

Listing 4.3: lst:sort-projection

union out of the two resulting OID BATs, and we also have the choice between
treating them as candidate lists or not.

To alleviate some of the issues with or clauses, MonetDB performs some transforma-
tions in its SQL optimizer. This includes changing A = B1 or A = B2 or... into A
in (B1, B2, ...). This is also favourable for Elf, since it reduces the number of needed
traversals from n to 1. This concept can be extended to other clause combinations.
Clauses of the form (A = X) and (B = Y or C = Z) would require a total of three
traversals; however, using the distributive law we may reshape it as (A = X and
B = Y) or (A = X and C = Z). This reduces the number of traversals down to
two, at the expense of having to check for A an additional time.

4.2 Optimizing Elf traversal

So far, each of the query types partial-match, in, and column-column existed in
isolation. That means a traversal could focus on checking the respective conditions
efficiently by skipping obviously unfit elements of a dimension list by utilizing their
sortedness. This results in nine different versions for the traversal of a dimension
list: one for partial-match, in, and not in queries respectively and six for the possible
column-column comparisons. To still keep the number of checked elements as low as
possible, queries containing multiple types require a unique function to handle each
of the possible combinations, resulting in 41 functions.

Although it seems beneficial having to load the least amount of dimension list el-
ements, there are some possible downsides to this. First, the comparatively large
number of functions necessarily increases the code size. Our implementation of these
functions results in sizes around 1KB, which may put pressure on the instruction
cache. Secondly, and probably more severely, deciding which function is the correct
one to use leads to quite a bit of branching. Depending on the quality of the CPU’s
branch predictor this may have more or less branch mispredictions as a consequence,
which may eat up the possible gains from the reduction in element checking. An
aggravating circumstance is that the average length of dimension lists gets shorter
with every column. Thus the usefulness of early termination gets greatly diminished
the lower one traverses into an Elf. To benefit from both the reduced checking as
well as less branching, we propose two heuristics shown in Figure 4.3 as a means to
decide whether to use early termination or not.

4.2. Optimizing Elf traversal 35

4.2.1 Determining cut-off column for early termination

The first heuristic looks at the average dimension list size. During construction of the
Elf we keep track of the average number of elements per dimension list. We then store
the index of the first column for which this average falls below a certain threshold.
At traversal time, we switch over from early termination to simply iterating all
elements once we reach that column. This relies on the observation that, while the
number of dimension lists goes up, their size goes down in later columns. This does
not necessarily hold for all cases; when the columns are ordered in a way such that
low-cardinality ones occur earlier, the Elf’s prefix redundancy elimination may lead
to later dimension lists having a larger-on-average size.

Figure 4.3: The two heuristics for ending early termination: dimension list size and
compactness of paths (in yellow)

The second heuristic is also a threshold, but instead of tracking the size of dimension
lists, we observe how ”unravelled” the Elf becomes. We look at the ratio between
the number of TIDs and the number of paths for a given column in the Elf as an
indicator for this. This is necessarily monotone, since paths may split up but cannot
recombine. This value is highest for the hashlist and lowest for the last column,
with a minimum of 1, assuming no duplicate entries, and the number of TIDs as its
maximum, assuming a hashlist size of 1. Thus we define the compactness of an Elf
column as

cElf,d =

|TID|
|Pathsd|

− 1

|TID| − 1
, (4.1)

yielding a range of [0, 1]. We then specify a threshold in that range after which we
no longer use early termination in the same manner as for the first heuristic.

None of the two heuristics is perfect; while the compactness attempts to remedy the
lack of guaranteed monotony, it lacks the concrete relation to dimension list size, as
it is only a surrogate. The threshold needs to be chosen with respect to the total
number of TIDs in the Elf. However, the compactness is less prone to changes in
column order.

4.2.2 Small string optimization

In Section 3.3, we discussed how to efficiently query non-integral columns with Elf.
We made the general assumption that strings are of variable length and larger than
a machine word. In some relations, however, it may occur that strings are short and

36 4. Query optimization for Elf

fixed-sized, possibly being used as flags or abbreviations. If the length is smaller
than four (i.e. the number of bytes per Elf entry) then we may store them directly
in the Elf without having to resolve them at runtime as in Section 3.3.2.

When creating the Elf from parsed BATs, we check the type of column; eligible
types are char(n), where n ≤ 4. To avoid collision with Elf’s end-of-list bit, we
require the 4th character, if present, to be of ordinal value less than 128, which are
all standard ASCII characters. Then, instead of storing an index, we convert the
string such that the first character corresponds to the highest byte as the Elf value:
the string abc turns into the number 97 ∗ 216 + 98 ∗ 28 + 99 = 6382179, assuming
standard ASCII encoding. This ensures that the lexicographical ordering is upheld.

At query time, we perform the same conversion for strings occurring in queries
instead of an index lookup, avoiding most of the overhead otherwise present to
prepare a query. Similarly, these strings do not need to be resolved during Elf
traversal either.

5. Evaluation

In this chapter we discuss the evaluation of our work. This encompasses our setup,
the performance criteria, and findings of our work. To do so we analyse the query
runtime of MonetDB and compare it to both the baseline integration of Elf as well
as the different variants described in the previous chapters.

5.1 Evaluation setup

In order to properly judge the adequacy of our implementation, we need to compare
it with MonetDB in its original state. Since the primary focus of Elf lies on query
performance, our evaluation consists of measuring the completion time of queries.
This will allow us to not only gauge the quality of our different optimizations over
the Elf’s base implementation, but also compare Elf directly with sequential BAT
scans, either accelerated or not, in terms of speed. While certainly interesting for
a DBMS, we decided to not evaluate the additional memory consumption of Elf
beyond cursory observations.

The following sections detail our choice of benchmark and evaluation procedure. We
also attempt to predict the effect of our optimizations.

5.1.1 Dataset and selected queries

To have consistent and comparable findings, we decide to use the TPC-H benchmark
[Cou14], which the original Elf paper also uses [BKSS17]. In their evaluation, they
operate on compressed data, which allows them to stay clear of strings entirely. Since
a large part of our integration revolves around the issue of strings, however, we do
not perform dictionary compression beforehand and instead load the data directly
from file.

To judge the effects of different dataset sizes and queries, we selected th following
scale factors and queries:

• Scale factors(SF): 0.01, 0.1, 1, and 10. This gives us a good estimate of when
the Elf offers benefits compared to MonetDB’s implementation.

38 5. Evaluation

• Queries: Q6, Q12, Q16, Q19, Q22. We selected these queries based on their
selectivity as well as their potential for Elf utilization. Except for Q6, the
original Elf paper evaluated on different queries; however, these mostly utilize
only a single indexed dimension per table and are thus ill-suited to evaluate
our optimizations.

The query Q19 poses a difficulty for us: its sub-conditions operate on the same
columns. As a consequence MonetDB optimizes it in a way that does not allow for
easy conversion to Elf-based querying. Thus, we use a variant of Q19 which does not
have different sub-conditions and instead uses only the first of three (see Listing 5.1).

1 select sum(l e x t e n d e d p r i c e ∗ (1 − l d i s c o u n t)) as revenue
2 from l i ne i t em , part
3 where (
4 p partkey = l pa r tk ey
5 and p brand = ’ Brand#12 ’
6 and p conta ine r in (’SM CASE ’ , ’SM BOX’ , ’SM PACK’ , ’SM PKG’

)
7 and l q u a n t i t y >= 1 and l q u a n t i t y <= 1 + 10
8 and p s i z e between 1 and 5
9 and l shipmode in (’AIR ’ , ’AIR REG’)

10 and l s h i p i n s t r u c t = ’TAKE BACK RETURN’
11) ;

Listing 5.1: Reduced query Q19

We also include a custom, synthetic query to test our small-string optimization, as
TPC-H does not feature a query suitable for this; while Q10 does have a predicate on
lineitem’s l returnflag, the resulting minimal Elf for the table would only consist of
a single column. Since it is unrealistic to deploy a multi-dimensional index structure
for single-column data, we instead use the query depicted in Listing 5.2 for our
comparison as a modification of Q10.

1 select count (∗) from l i n e i t e m
2 where l s h i p d a t e >= date ’ 1993−10−01 ’
3 and l s h i p d a t e < date ’ 1993−10−01 ’ + interval ’ 3 ’ month
4 and l r e t u r n f l a g = ’R ’ ;

Listing 5.2: Synthetic query for SSO evaluation

A large part of the Elf’s performance is in what order columns are indexed: columns
with lower cardinality feature larger prefix redundancy and thus larger possible
savings in memory and traversal time. Since the Elf’s main target is data without
many changes, we assume that it is realistic to know the cardinalities prior to creating
our Elf. Thus we order the columns ascending with regards to their cardinality.

Another aspect of this are columns which are not used by queries. Since they do not
offer any selectivity but still need to be traversed, such columns have the potential to

5.1. Evaluation setup 39

significantly slow down traversals. While it may be less realistic, we also build Elfs
which only feature those columns partaking in a query. Furthermore, building Elfs
specific to a query offers the opportunity to reorder the columns more accurately,
using the query’s selectivity instead of cardinality. We thus end up with the following
configuration:

• Q6: lineitem(l quantity, l discount, l shipdate)

• Q12: lineitem(l shipmode, l receiptdate, l commitdate, l shipdate)

• Q16: part(p type, p brand, p size)

• Q19: part(p size, p container, p brand) and lineitem(l quantity, l shipinstruct,
l shipmode)

• Q22: customer(c acctbal, c phone)

• Q23: lineitem(l returnflag, l shipdate)

Note that we omit columns used in a query but not usable by Elf, e.g. for joins or
like-queries, too. The same holds for Elfs which would only hold a singular column,
as would be the case in Q16 for the table partsupp. To estimate Elf’s performance
for the worst case in which nothing is known about future queries or queries may
use all columns, we evaluate our test set on fully built Elfs. As a heuristic we order
the columns such that those with lowest cardinality appear first, since that utilizes
prefix redundancy the most.

To better understand how MonetDB’s performance relates to Elf, we list which query
columns use column imprints: all columns of Q6, l receiptdate of Q12, l quantity
and p size of Q19, as well as c acctbal of Q22. The full MAL code generated for
each query along with annotations of the concrete algorithm for each select can be
found in Chapter 8.

5.1.2 Testing variants and expected results

Since most of the TPC-H queries operate on one or more string columns, we divide
the variants in two major categories: index-based as idx (see Section 3.3.1) and
resolve-based as res (see Section 3.3.2). When a query contains strings, idx deter-
mines their index in the BAT or, if it is not present, a suitable replacement matching
the comparator before the actual traversal. Hand in hand, the Elf indexes strings by
storing their ordered index, which allows it to compare them during traversal with-
out having to use the strings directly. On the other side, ref stores unordered indices
and instead retrieves the strings during traversal for comparison; this removes the
need for looking up string indices prior to the query.

To denote whether an Elf contains the entire dataset or only the columns relevant
to the query, we append the suffix min in the latter case. As mentioned, min Elfs
have their columns ordered by their selectivity for each respective query, while full
Elfs use their cardinality as a heuristic.

40 5. Evaluation

Since most of the additions or optimizations we described in the previous chapters
may be combined with each other, we have to select a subset of them. In the
following we list them and their abbreviation which we will use:

• base: This is the base variant, not using any optimization at all.

• combine (c): Instead of creating a new query and subsequent traversal for
every predicate, they are combined into one query (see Section 4.1). This is
only possible when predicates are combined via and, e.g. a >= b AND a <=
c. This also removes the need for merging together multiple TID/OID lists
from the traversals.

• sort (s): Since Elf does not support all query types such as join, the results
need to be processed by MonetDB. Since MonetDB requires OID lists to be
sorted, two options exist: either we treat the OID list as a regular BAT and
perform an unsorted merge with other OID lists, or we sort the TID list we
obtain from Elf traversal (see Section 4.1.4). The base variant lets MonetDB
handle the issue and thus merges OID lists with a merge-join.

• early termination (et): When querying Elf, the presence of an upper limit
allows us to stop iterating a dimension list once we reach said limit. However,
these lists can get small enough to fit in a cache line, which is 64 bytes for
the CPU we used in the experiments. In this case, the additional branching
needed for the early termination may outweight the cost of the additional
memory access and comparison: a L1 cache hit takes four cycles for the Intel
Haswell architecture, while its pipeline has at least 14 stages [Int16]. The base
variant fully iterates all dimension list, while et aborts as soon as possible.
To allow for a dynamic switch between terminating early and fully iterating
dimension lists, there are two ways to determine a cut-off column: the dimlist
and path heuristic.

– dimlist heuristic (d): To strike a compromise between never and always
terminating early, we compute the average dimension list length and stop
et after a threshold as described in Section 4.2.1. We set the threshold
to three; this was chosen to have a high chance of having the entire list
in the L1 cache and a pipeline stall being larger than the accumulated
access cost.

– path heuristic (p): Similarly to d, we compute a cutoff dimension until
which we terminate early. Instead of the average dimlist size, this variant
uses the ratio between the number of unique tuples and paths in the Elf.
We chose to set the cutoff ratio to 0.9.

• index-only (i): This variant is only sensible for the res Elf. Generally we
store integers directly in both idx and res Elfs, while strings have their indices
stored. To get an impression of the performance penalty involved, we test the
res Elf having to look up all value types in their BATs, not just strings.

• Small-string optimization (sso): To avoid the special treatment of strings alto-
gether, we transform strings with a length less or equal to 4 into 32-bit integers

5.1. Evaluation setup 41

as described in Section 4.2.2. This allows us to treat them as regular integers
both during query preparation and traversal.

Both i and sso will be looked at separately from the other variants: the former is
only applicable for res-type Elfs and is only supposed to visualize the cost of indirect
access, while the latter is a strict improvement. We also cannot evaluate sso with
the queries Q6 to Q22 due to their lack of small strings.

A reasonable assumption about the general performance is that the minimal Elfs
are generally faster than the fully-built ones: they require strictly less dimension list
traversals per retrieved TID. Not quite as clear is the question how the resolve-based
Elf matches up against the regular, index-based one. The only advantage it offers is
the absence of expensive pre-computing for strings. Thus, one might expect an edge
for queries with many string comparisons such as Q19. However, if the cardinality
of the string columns is not excessive, larger datasets should favour the index-based
Elf due to the lower cost of traversal. If a query does not use string columns, there
should be a disadvantage for the resolve-based approach stemming from some extra
branching when determining if a dimension list needs resolving. This should be
mostly negligible due to branch prediction.

Out of the optimizations, we expect combine to improve the base implementation:
combined traversals mean less main-memory access and operations at the expense of
increased code complexity and some additional branching, which is even mitigated
by branch prediction. In addition, it should also reduce the overhead of merging
together multiple TID lists, as otherwise would be necessary. We also expect early
termination to improve the runtime, considering that this was used in the Elf’s
original implementation. Since these two optimizations do not affect each other,
combining the two should yield the best results.

The impact of sorting TID lists before handing them over to MonetDB is somewhat
uncertain. On the one hand, merging two sorted lists is faster than two non-sorted
lists. On the other hand, MonetDB’s sorting function allocates a new BAT for the
result. In addition, if we merge with a TID list handled by MonetDB, one of the
two lists is already sorted, enabling MonetDB to use a merge join.

We estimate that the heuristics to determine when to stop early termination should
have a small positive effect on the query runtime, considering that it removes some
of the branching. This should be most noticeable when a query combines partial-
match, in, and column-column queries such as Q12. Since we sort the columns
by selectivity/cardinality, there should be little difference between the dimlist and
path heuristic. Small-string optimization also should have a net positive effect, split
between query preparation for index-based and traversal time for resolve-based Elf.

5.1.3 Evaluation procedure

To limit side-effects, we structured the evaluation in separate steps. For each scale
factor we load each table from a text file on disk. This happens via MonetDB’s SQL
extension copy into, which simply deposits the parsed data in BATs. Next, we test
each of the optimizations described in Section 5.1.2 paired with the four Elf variants

42 5. Evaluation

idx, idx-min, res, and res-min. For the minimal Elfs, we first create the Elf for a
query, execute the query ten times, and then discard the Elf again. For the full Elfs,
as well as MonetDB’s regular query engine, we instead create all Elfs beforehand
and then execute all queries in succession, repeated again ten times. After that, we
drop the Elfs again. To compare the performance against MonetDB we also execute
all queries in the same manner without Elf enabled.

To avoid a series of complications regarding an inconsistent environment, we pin
the process mserver5, which parses and executes the queries, to the first CPU core.
Between each query execution we attempt to flush the data cache by creating a
400MB sized array and looping over it twice, writing the loop index and summing
the array contents respectively.

Each query execution tracks three metrics: execution time of select statements,
execution time of the MAL routine, and execution time of the entire query. For Elf,
select statements are equivalent to elf.select. For MonetDB, consequently, we count
all MAL statements which compute or are part of the computation we replace with
elf.select ; this excludes any projection or result aggregation. Measuring the MAL
execution time in addition to this allows us to evaluate the overhead of creating
Elf queries, particularly resolving strings and combining OID lists. Since we also
modified the MAL generation layer we can use the difference between MAL and
query execution time to evaluate possible overhead in the plan creation, too.

We perform the tracking with the built-in utilities of MonetDB, namely the trace
statement to time the MAL execution as well as the querylog routines for the entire
query duration, including parsing. It is important to note that the query times may
be influenced by the performance measurement; however, since they are present for
every query it is a systemic bias. Additionally, we cannot separate the overhead of
column imprints construction from the actual query. Since this only happens once
per BAT and scale factor, we instead discard outliers as addressed in Section 5.4.1.

The evaluation happens on a PC with two Intel Xeon E5-2630 v3 with 8 cores and
2.4 GHz each, alongside 1024GB of DDR4-2133 RAM running at 1866 MHz. The
operating system is CentOS 7.3 with kernel version 3.10 and the compiler is the
system compiler GCC 4.8.5. We use MonetDB’s release configuration, which uses
optimization level O3, omits frame pointers for smaller functions, and disables debug
code like asserts.

5.2 Experiments

To evaluate how well each variant or combination thereof performs, we will first
look at the difference between index- and resolve-based Elf. In the following we go
through each variant and discuss how they influence the query times.

5.2.1 Index-based vs. resolve-based

The first choice for Elf is whether to use idx or res as a way to deal with strings.
Figure 5.1 shows the query execution times of both variants each for full as well as
minimal Elf. It is apparent that res is strictly worse than idx for all queries and
sizes, worsening for larger scale factors. This corresponds to our expectations, seeing

5.2. Experiments 43

as more data means more resolutions during traversal. The same graph also shows
that the minimal Elfs always perform better, once again scaling with size. However,
the difference depends on the query, with Q6, Q12, and Q19 showing the largest
improvement.

0

10

20

30

40

50

60

70

80

Q
u

e
ry

 t
im

e
 i
n

 m
s

0.01GB

Q6 Q12 Q16 Q19 Q22

0

100

200

300

400

500

600

Q
u

e
ry

 t
im

e
 i
n

 m
s

0.1GB

Q6 Q12 Q16 Q19 Q22

0

1000

2000

3000

4000

5000

Q
u

e
ry

 t
im

e
 i
n

 m
s

1GB

id
x

id
x

id
x

id
x

id
x

re
s

re
s

re
s

re
s

re
s

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

Q6 Q12 Q16 Q19 Q22

0

10000

20000

30000

40000

50000

60000

Q
u

e
ry

 t
im

e
 i
n

 m
s

10GB

Select

Rem. MAL code

MAL generation

id
x

id
x

id
x

id
x

id
x

re
s

re
s

re
s

re
s

re
s

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

Q6 Q12 Q16 Q19 Q22

Figure 5.1: Index- vs. resolve-based Elf query times

When considering the minimal Elf, res-min appears to perform better than idx-
min for Q16 and Q19, whereas the two draw even in Q6, which does not have any
string predicates. For both Q16 and Q19, the advantage of res-min comes entirely
from the query preparation, which is generally faster for res, while the traversal is
slower than for its counterpart. This is most pronounced in Q19, which has many
string predicates: here the preparation takes three times as long as the traversal for
idx-min.

5.2.2 Comparison of optimizations

In this section we will walk through all optimizations, comparing them to our base-
line implementation.

Looking at Figure 5.2, it becomes immediately apparent that sort does not actually
improve the query time. Instead, the time spent on the selection increases drastically,
becoming worse with increased dataset size. Contrary, the query preparation time
gets reduced, which results from the sorting being part of the Elf traversal. The

44 5. Evaluation

0

2

4

6

8

10

Q
u
e
ry

 t
im

e
 i
n
 m

s
0.01GB

0

5

10

15

20

25

30

35

40

Q
u
e
ry

 t
im

e
 i
n
 m

s

0.1GB

0

50

100

150

200

250

300

Q
u
e
ry

 t
im

e
 i
n
 m

s

1GB

M
on

et

ba
se c s cs et ce

t
ce

td
ce

tp
0

500

1000

1500

2000

Q
u
e
ry

 t
im

e
 i
n
 m

s

10GB

Select

Rem. MAL code

MAL generation

M
on

et

ba
se c s cs et ce

t
ce

td
ce

tp

Figure 5.2: Query times for idx-min Elf on Q6

reason for this performance drop is two-fold: for one, MonetDB does not offer a
routine for in-place sorting, which requires it to allocate a new BAT for the sorted
TIDs. Secondly, the merge-join performed when we do not sort the results operates
on one already-sorted list. This improves its complexity significantly over the general
unsorted case. In addition, after sorting the result, it still needs a merge with other
OID lists, resulting in yet another allocation.

The combine variant improves both select and query preparation time significantly.
The positive effect seems to increase with dataset size, too. This is a direct conse-
quence of the reduced number of traversals, which also means that less result lists
have to be merged together. It also reduces the overhead for creating Elf queries,
which is a fixed cost for each query. The combination of both combine and sort bet-
ter shows the cost of sorting since it only sorts one TID list; while it is significantly
lower than having to sort many lists, it does not beat MonetDB’s merge-join. The
res variants profit even more from combine due to their more expensive traversal.

Early termination by itself improves the baseline select performance especially for
the lower scale factors. This shows that the memory access of Elf and the possible
cache miss have a larger impact on the traversal time than possible branch mis-
predictions and the increased code size due to all the corner cases involved. The
lower gains for the larger dataset stems from a non-linear increase in cardinality for
the columns, which in turn reduces the number of dimlist entries omitted by early

5.2. Experiments 45

0

200

400

600

800

1000

Q
u
e
ry

 t
im

e
 i
n
 m

s
Q12

0

100

200

300

400

500

Q
u
e
ry

 t
im

e
 i
n
 m

s

Q16

0

200

400

600

800

1000

Q
u
e
ry

 t
im

e
 i
n
 m

s

1GB

Select

Rem. MAL code

MAL generation

M
on

et

ba
se c s cs et ce

t
ce

td
ce

tp

0

50

100

150

200

Q
u
e
ry

 t
im

e
 i
n
 m

s

Q22

M
on

et

ba
se c s cs et ce

t
ce

td
ce

tp

Figure 5.3: Query times of the index-based approach for Q12, Q6, Q19, and Q22 for
scale factor 1

termination. Since there are no changes to the selection prelude, the query overhead
stays the same compared to the baseline. For res and res-min early termination does
offer an improvement, but it is less pronounced. This is likely due to the fact that a
large portion of resolve’s cost is caused by fetching BAT parts into the cache. This
will always happen when entering a dimension list supposedly storing strings, but
subsequent lookups for the same dimension list may already be in the cache due to
prefetching, which means that later dimension list entries have a lower comparison
cost. A mitigated form of this effect might also occur for index-based dimension
lists when a dimension list contains the end of a cache line and the CPU does not
prefetch further lines, but it is not guaranteed to occur every dimension list.

Combining both early termination and combine yields the best performance across
all sizes and Elf types. The performance difference when using either the dimlist
or path heuristic is negligible, as well as the difference between the two. This may
be explained by the potency of modern CPU’s branch prediction, reducing the fre-
quency and thus impact of pipeline stalls, as well as the fact that fetching dimension
lists from memory has a far greater cost associated with it, dominating the traversal
time.

As figure Figure 5.3 shows, the behaviour of the optimizations is mostly uniform
across all queries, with the exception of combine and sort together for Q22; this

46 5. Evaluation

happens since there is only one Elf select, which means no improvement from query
combination.

In summary, the fastest variant in most scenarios is idx-min with early termination
and combine, while sort for any Elf type adds a large penalty. The res variants
can only really compete in Q19, which has a lot of query strings and thus expensive
query preparation.

5.2.3 Small String Optimization

0

1000

2000

3000

4000

5000

idx-base idx-min res res-min

Q
u

e
ry

 t
im

e
 i
n

 m
s

Custom query - 1GB

Figure 5.4: Comparison between base variant and SSO for custom query

As Figure 5.4 shows, replacing small fixed-size strings with integers does improve
query performance for our artificial query. The effect is most pronounced for res
Elfs. The reason for this is that the fully-built Elf does not have the string column
as its first, which leads to more BAT look-ups since there are more dimension lists
in lower dimensions.

The idx variant also profits from sso. Instead of speeding up traversal, however,
the prelude of finding the string’s index is omitted. This leads to a noticeable
improvements, even for the minimal Elf, whereas there is no visible improvement for
resolve-based minimal Elf due to the overall low query time.

5.2.4 Size scaling

We conducted our experiments with data limited in size up to 10GB. However, to
draw conclusions about possible performance for larger datasets, Figure 5.5 shows
how well the different Elf variants scale with size compared to MonetDB. The nor-
malized time ratio computes from the ratio of query times between two dataset sizes
normalized by the ratio of the sizes, with a ratio below one indicating a less-than-
linear increase in query time. In our case the normalization factor is 10. We split
the results in two parts: the left side of each sub-plot shows the ratios for the entire
query duration, whereas the right side only takes the time spend on the selection
into account.

The optimization chosen for Elf was concat combined with early termination. Over-
all, how well any approach scales depends on the query in question. While the

5.3. Discussion 47

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 t

im
e

 r
a

ti
o

Q6

total select only

0

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 t

im
e

 r
a

ti
o

Q12

total select only

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

im
e

 r
a

ti
o

Q16

total select only

M
on

et
D
B id

x

id
x-

m
in re

s

re
s-

m
in

M
on

et
D
B id

x

id
x-

m
in re

s

re
s-

m
in

0

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 t

im
e

 r
a

ti
o

Q19

total select only

M
on

et
D
B id

x

id
x-

m
in re

s

re
s-

m
in

M
on

et
D
B id

x

id
x-

m
in re

s

re
s-

m
in

Figure 5.5: Scaling of MonetDB and Elf approaches when increasing size

minimal Elf generally scales better, the overhead of query creation balances the
scaling when looking at the entire query duration. The selection part for minimal
Elfs always scales better than MonetDB, regardless of query and Elf type. There
does not seem to be a difference between resolve- and index-based minimal Elf, while
the full resolve-based Elf is generally worse. This is likely due to the extra columns
being worse for the latter, since they pollute the cache and may push out BAT
values.

5.3 Discussion

Looking at Figure 5.6, whether Elf is the better choice over scanning BATs depends
on the concrete type of Elf as wells as the query in question. The res Elf does best
for Q19, where idx Elf incurs a large overhead to find indexes for the query strings.
The time spend on the actual select is usually lower for Elf; unfortunately, in most
cases the necessary inter-op to MonetDB costs more than the gain from the fast
traversal. Exceptions to this are Q22, for which Elf can only query a single column,
as well as Q12 when combining res Elf and low scale factor. The latter is a result of
the additional BAT lookup, which are not cached at the beginning of the traversal
and thus incur a larger initial penalty.

A big strength of Elf lies in its ability to combine multiple query predicates into
one traversal, which requires support from the DBMS. Taking that away makes Elf
a non-favourable choice, regardless of how it handles strings. Similar effects, but
to a lesser extend, can be observed when omitting its early termination. Both of

48 5. Evaluation

0

5

10

15

20

25

30
Q

u
e

ry
 t

im
e

 i
n

 m
s

0.01GB

M
on

et

M
on

et

M
on

et

M
on

et

M
on

et

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

Q6 Q12 Q16 Q19 Q22

0

10

20

30

40

50

60

70

Q
u

e
ry

 t
im

e
 i
n

 m
s

0.1GB

M
on

et

M
on

et

M
on

et

M
on

et

M
on

et

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

Q6 Q12 Q16 Q19 Q22

0

100

200

300

400

500

600

Q
u

e
ry

 t
im

e
 i
n

 m
s

1GB

Select

Rem. MAL code

MAL generation

M
on

et

M
on

et

M
on

et

M
on

et

M
on

et

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

Q6 Q12 Q16 Q19 Q22

0

1000

2000

3000

4000

5000

6000

Q
u

e
ry

 t
im

e
 i
n

 m
s

10GB

M
on

et

M
on

et

M
on

et

M
on

et

M
on

et

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

id
x-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

re
s-

m
in

Q6 Q12 Q16 Q19 Q22

Figure 5.6: Query times for MonetDB and both minimal Elf variants with combine
and early termination (in order: MonetDB, index-based, resolve-based)

these techniques reduce the number of memory accesses, which is what gives it an
advantage over plain memory scans.

Generally, both MonetDB and Elf scale better-than-linear. While this is expected of
Elf due to its prefix redundancy elimination, a memory scan should not accelerate
given a sufficiently large dataset. However, MonetDB does not just invoke such a
scan. Instead, it performs a bunch of checks to figure out what algorithm to choose
and how large the result set may be. As such, there is some static overhead skewing
the raw select duration. In combination with the hash lookup performed for strings,
which naturally does not scale linearly, the less-than-linear growth is explained.

This does not hold for Q6, however, since it does not use strings and uses column
imprints to accelerate the scans. Unfortunately, we do not have an explanation
for this behaviour aside from CPU cache phenomenons: the biggest improvement
happens when increasing the scale factor from 1 to 10, at which point the columns
no longer fit into the L2 cache.

5.4 Threats to validity
To draw valid conclusions from the evaluation, we considered a number of possible
caveats beforehand. In this section we discuss both internal and external threats to
validity as well as our measures to limit their influence.

5.4. Threats to validity 49

5.4.1 Internal validity

In the design of our experiments we addressed the following threats: sampling vari-
ance, cache reusage, and measurement inaccuracy induced by MonetDB’s profiler.

• Sampling variance: Since our experiments cannot run in complete isolation,
there is bound to be some variance in the query time. This could be caused
by a number of issues: scheduling operations by the OS, sleep states of the
CPU, or state of the branch predictor at the start of a query are mostly out of
our control. To mitigate these we run each query ten times and averaged the
run times after discarding the three furthest outliers. Additionally, we pin the
process responsible for query execution to one core, minimizing the influence
of the task scheduler. Addressing the branch predictor is more difficult; aside
from averaging we do not run the same query twice in a row without some other
operation in-between, which is another query being executed or instructing
MonetDB to create an Elf.

• Cache reusage: One of the biggest influences for index structures and memory
scans is the CPU’s cache state. While not running the same query in succession
helps mitigating the issue, it cannot guarantee that some parts of the previous
data remain. Thus we attempt to reset the cache into a well-known state
before each query execution by loading a 50MB array, which exceeds the L3
cache size of 20MB. To also flush the L1 and L2 data caches, we execute this
on the same core as the query execution. Since we do not directly invalidate
cache lines, it might happen that some query data remains cached if the CPU
uses an unusual caching strategy, i.e. it does not evict cache lines in favor of
sequentially read data.

• Measurement inaccuracy : Considering that we need to measure the query exe-
cution time, we introduce a systemic bias by using MonetDB’s trace facilities,
slightly increasing query duration for every query. Differences should happen
due to longer MAL code and thus more measuring, but only be on the scale of
microseconds and thus the same scale as trace’s accuracy. To avoid measuring
the profiler itself, we do not count the completion time of MAL statements
related to trace itself or the query log. However, the total query time still
includes these, adding a slight bias to it.

5.4.2 External validity

The main threat to generalizing our evaluation is the lack of realism. Since the Elf is
not applicable to a large range of query types, we had to limit ourselves to a narrow
selection of queries. To avoid over-specializing, we chose queries which elicit different
parts of our implementation. Choosing different scale factors helps determining the
system’s capacity to deal with different dataset sizes. This does not only affect the
actual select, but also the interop for result set creation or further processing, as the
result size grows with over dataset size.

50 5. Evaluation

6. Related Work

In this chapter, we list some research related to our own work. Due to MonetDB’s
modularity and research character, there are a number of extensions building on it.
We first discuss some alternative acceleration approaches and then give an overview
of existing extensions.

Research on improving multi-dimensional queries as used in OLAP/OLTP may be
divided in two categories: indexing and accelerating main-memory scans. The for-
mer splits again into data- and space-partitioning approaches, including tree-based
techniques like kd and r-trees (see Section 2.3). An alternative to the column im-
prints used by MonetDB for the acceleration of main-memory scans is BitWeaving.
For columns which use less bits than a full processor word offers, it packs multiple
values into one word, evaluating a query predicate on all of them in parallel [LP13].
Depending on the how the packing occurs, BitWeaving differentiates between hor-
izontal and vertical bit-parallelism. Like column imprints, it can only speed up
queries for a single column at a time.

The separation of front- and back-end as well as the flexibility of MAL allow for
customizations of MonetDB without needing to change the entire system. The large
datasets of GIS applications brought about the need for efficient bulk loading and
filtering of point cloud data, leading to the implementation of the geom-submodule of
MonetDB [BQK96]. Importantly, it makes use of column imprints (see Section 2.3)
for the filtering. To allow processing of genome sequence data, the BAM/SAM -
module extends MonetDB with SQL functionality to load and export sequence data
[CMK+15]. To work with the data, it also introduces functions operating on sequence
alignment data to the front-end and automatic construction of read pairs.

To enable XQuery as a query language, MonetDB/XQuery adds a parser front-
end. However, since XML does not directly translate to relational schemata, it
implements a relational encoding alongside mappings to relational algebra and al-
gorithms for traversal and document updates. These changes are accompanied by
MAL generation as well as an optimization pipeline to reorder the query plan and are
aggregated in the Pathfinder compiler module. The corresponding runtime module
adds loop-lifting staircase join to evaluate nested iteration scopes in XQuery.

52 6. Related Work

MonetDB/DataCell is an extension retrofitting MonetDB with stream functionali-
ties [LIMK12]. It interjects itself between the kernel and the SQL front-end, extend-
ing the parser with language constructs to recognize continuous queries and imposing
a query rewrite on the generated SQL plan, storing it in possibly multiple factories.
The query execution is handled by a scheduler, interacting with lightweight tables
called baskets, which aggregate stream tuples for processing. These tuples enter the
system via receptors and exit via emitters once the system finishes query execution
on the aggregated data.

To further optimize cache usage on modern CPUs, MonetDB/X100 implements a
new query engine [BZN05]. It exchanges the compiled MAL statements in favor of
vectorized data directly in the cache, processing multiple columns with relational
operators [ZBNH05]. This helps both utilizing the CPU cache as well as pipelining.
From this, Vectorwise developed, merging the execution engine of MonetDB/X100
with the Ingres RDBMS [ZvdWB12].

Since GPUs have surpassed CPUs in raw computational power, Ocelot is a proof-of-
concept extension for MonetDB, enabling it to take advantage of different hardware
via hardware-oblivious parallelism [HSP+13]. It employs OpenCL to abstract away
the actual hardware, compiling the operators at runtime. The device memory is
seen as a cache, holding BATs and evicting them in favor of recently accessed ones
akin to the CPU’s own cache. A problem building from device-agnostic operators is
the choice of the correct device to run a given operation on. The optimizer HyPE
approaches this with a set of heuristics including device load and the estimated
runtime of each operator [BBR+13]. Both systems were combined to form a system
taking advantage of heterogeneous hardware [BKH+14].

7. Conclusion

To finalize this thesis, we summarize our findings and propose ideas for future work
in this chapter.

In this work, we successfully integrated the main-memory index structure Elf into
the column-store MonetDB. For this, we extended MonetDB in three areas: its
parser, query execution engine, and data loading facilities. Extending the parser
allows us to choose between different implementations. Via its internal language
MAL, we provide facilities to create, populate, and execute partial-match, in, and
column-column queries alongside MonetDB’s regular query engine.

Furthermore, we introduced two variants to allow string-typed columns in Elf. They
differ in where they place the additional overhead: we either sort strings during Elf
creation and use their ordered indices as a replacement, or store their unordered in-
dices and look them up during traversal, striking a trade-off between faster traversal
and faster query preparation.

We then showed several improvements of our implementation. These aim for the
interoperability with MonetDB as well as how to properly utilize Elf by aggregating
multiple queries before execution. To improve the handling of strings, we proposed a
way to quickly store small strings directly in Elf. Additionally, we suggested a way to
dynamically switch between complex termination criteria and fully traversing small
dimension lists as a trade-off between cache- and branching-friendly traversal.

Our evaluation on the TPC-H benchmark showed that the improvements to interop-
erability have a large impact on the query overhead. While the Elf with aggregated
queries is mostly faster for the scale factors 1 and 10, the additional cost of string
processing is significant compared to MonetDB’s straight-forward query prepara-
tion. This is also reflected in the choice of string handling: many strings in a query
largely favour resolving strings during traversal, albeit the increased actual query
time. Determining a cut-off column for early termination proved to be largely in-
significant for the traversal performance. Another significant factor for the query
time is what columns the Elf indexes, which should be the minimal set necessary for
the queries.

54 7. Conclusion

In summary, we enabled the optional use of Elf in a real-world DBMS and showed
that it can improve the performance, although it can have a significant overhead.
We showed solutions for storing strings and the significance of column selection for
indexing.

7.1 Future work

In this section we present ideas for continued research. These revolve largely around
improving the interoperability between Elf and MonetDB.

Elf in its current state is fairly limited in its possible operations: it only supports
partial-match, in, and column-column queries, neither joins nor update operations
of any kind are currently possible. To enable the use of Elf in scenarios with a largely
static database, but small additions over time, we suggest research into extending
Elf. One possible avenue for this could be the aggregation of tuples either in regular
BATs or a separate, not linearized Elf. While this set of tuples remains small, the
additional time spend on querying them is negligible. Once it grows to be noticeable,
the DBMS may automatically trigger a rebuild or merge between the two sets.

Throughout this work we limited MonetDB and thus Elf to a single thread, which
is fairly limiting for modern multi-core CPUs. A logical consequence would be to
split the traversal of Elf into multiple threads, each aggregating TIDs from their
respective sub-trees. However, care would have to be taken when combining the
results, as the overhead may not be worth the effort. Similarly, Elf may be able to
take advantage of SIMD. This would require proper alignment and thus an increase
in size, which may also decrease performance since less dimension list entries would
fit into a cache line.

Since our focus was on the selection performance of Elf, we neglected its creation
time and memory footprint. For a real-world DBMS both matter, especially if the
data is not totally static. To not lose the created Elf with every server shutdown,
we propose to utilize MonetDB’s storage facilities to make Elfs persistent alongside
BATs, possibly utilizing memory-mapped files.

The downside of handling strings by ordering them is the large overhead upfront
as well as additional memory consumption for the ordered indices. While the lat-
ter cannot be avoided entirely, it may be possible to speed up the index lookup.
Currently, we need to iterate all indices if the comparator of the predicate is not
equals. However, it may prove to be beneficial to use an acceleration structure for
the lookup, provided it supports finding the next smaller and larger value. Alter-
natively, caching the lookup or looking up multiple strings per iteration may also
reduce the overhead.

8. Appendix

56 8. Appendix

1 f unc t i on user . s6 1 () : void ;
2 X 12 : int := s q l . mvc () ;
3 X 16 : bat [: lng] := s q l . bind (X 12 : int , "sys" : str , "lineitem" :

str , "l_quantity" : str , 0 : int) ;
4 X 33 : bat [: lng] := s q l . bind (X 12 : int , "sys" : str , "lineitem" :

str , "l_discount" : str , 0 : int) ;
5 X 40 : bat [: date] := s q l . bind (X 12 : int , "sys" : str , "lineitem" :

str , "l_shipdate" : str , 0 : int) ;
6 C 13 : bat [: oid] := s q l . t i d (X 12 : int , "sys" : str , "lineitem" :

str) ;
7 // Column imprints

8 C 51 : bat [: oid] := a lgebra . s e l e c t (X 40 : bat [: date] , C 13 : bat [:
oid] , "1994-01-01" : date , "1995-01-01" : date , t rue : bit ,
f a l s e : bit , f a l s e : bit) ;

9 // Column imprints with candidates

10 C 68 : bat [: oid] := a lgebra . s e l e c t (X 33 : bat [: lng] , C 51 : bat [:
oid] , 5 : lng , 7 : lng , t rue : bit , t rue : bit , f a l s e : bit) ;

11 // Column imprints with candidates

12 C 71 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 16 : bat [: lng] , C 68 :
bat [: oid] , 2400 : lng , "<" : str) ;

13 X 26 : bat [: lng] := s q l . bind (X 12 : int , "sys" : str , "lineitem" :
str , "l_extendedprice" : str , 0 : int) ;

14 X 74 : bat [: lng] := a lgebra . p r o j e c t i o n (C 71 : bat [: oid] , X 26 :
bat [: lng]) ;

15 X 75 : bat [: lng] := a lgebra . p r o j e c t i o n (C 71 : bat [: oid] , X 33 :
bat [: lng]) ;

16 X 81 : bat [: hge] := bat ca l c . ∗ (X 74 : bat [: lng] , X 75 : bat [: lng]) ;
17 X 83 : hge := aggr . sum(X 81 : bat [: hge]) ;
18 end user . s2 1 ;

Listing 8.1: MAL code of Q6 by MonetDB

57

1 f unc t i on user . s12 1 () : void ;
2 X 17 : int := s q l . mvc () ;
3 X 45 : bat [: str] := s q l . bind (X 17 : int , "sys" : str , "lineitem" :

str , "l_shipmode" : str , 0 : int) ;
4 X 38 : bat [: date] := s q l . bind (X 17 : int , "sys" : str , "lineitem" :

str , "l_receiptdate" : str , 0 : int) ;
5 X 31 : bat [: date] := s q l . bind (X 17 : int , "sys" : str , "lineitem" :

str , "l_commitdate" : str , 0 : int) ;
6 X 21 : bat [: date] := s q l . bind (X 17 : int , "sys" : str , "lineitem" :

str , "l_shipdate" : str , 0 : int) ;
7 X 66 : bat [: bit] := bat ca l c .>(X 31 : bat [: date] , X 21 : bat [: date

]) ;
8 X 59 : bat [: bit] := bat ca l c .<(X 31 : bat [: date] , X 38 : bat [: date

]) ;
9 C 18 : bat [: oid] := s q l . t i d (X 17 : int , "sys" : str , "lineitem" :

str) ;
10 // Full scan

11 C 62 : bat [: oid] := a lgebra . s e l e c t (X 59 : bat [: bit] , C 18 : bat [:
oid] , t rue : bit , t rue : bit , t rue : bit , t rue : bit , f a l s e : bit) ;

12 // Candidate scan

13 C 68 : bat [: oid] := a lgebra . s e l e c t (X 66 : bat [: bit] , C 62 : bat [:
oid] , t rue : bit , t rue : bit , t rue : bit , t rue : bit , f a l s e : bit) ;

14 // Column imprints with candidates

15 C 73 : bat [: oid] := a lgebra . s e l e c t (X 38 : bat [: date] , C 68 : bat [:
oid] , "1994-01-01" : date , "1995-01-01" : date , t rue : bit ,
f a l s e : bit , f a l s e : bit) ;

16 // Full scan with hash lookup

17 C 75 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 45 : bat [: str] , C 73 :
bat [: oid] , "MAIL" : str , "==" : str) ;

18 // Full scan with hash lookup

19 C 78 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 45 : bat [: str] , C 73 :
bat [: oid] , "SHIP" : str , "==" : str) ;

20 X 79 : bat [: oid] := bat . mergecand (C 75 : bat [: oid] , C 78 : bat [:
oid]) ;

21 X 52 : bat [: oid] := s q l . b ind idxbat (X 17 : int , "sys" : str , "

lineitem" : str , "lineitem_l_orderkey_fkey" : str , 0 : int) ;
22 (X 55 : bat [: oid] , X 56 : bat [: oid]) := s q l . b ind idxbat (X 17 : int

, "sys" : str , "lineitem" : str , "lineitem_l_orderkey_fkey" :
str , 2 : int) ;

23 X 54 : bat [: oid] := s q l . b ind idxbat (X 17 : int , "sys" : str , "

lineitem" : str , "lineitem_l_orderkey_fkey" : str , 1 : int) ;
24 X 84 : bat [: oid] := s q l . p r o j e c t d e l t a (X 79 : bat [: oid] , X 52 : bat

[: oid] , X 55 : bat [: oid] , X 56 : bat [: oid] , X 54 : bat [: oid]) ;
25 C 85 : bat [: oid] := s q l . t i d (X 17 : int , "sys" : str , "orders" : str)

;

Listing 8.2: MAL code of Q12 by MonetDB

58 8. Appendix

1 (X 94 : bat [: oid] , X 95 : bat [: oid]) := a lgebra . j o i n (X 84 : bat [:
oid] , C 85 : bat [: oid] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l :
lng) ;

2 X 103 : bat [: str] := a lgebra . p ro j e c t i onpa th (X 94 : bat [: oid] ,
X 79 : bat [: oid] , X 45 : bat [: str]) ;

3 (X 137 : bat [: oid] , C 138 : bat [: oid] , X 139 : bat [: lng]) := group
. groupdone (X 103 : bat [: str]) ;

4 X 140 : bat [: str] := a lgebra . p r o j e c t i o n (C 138 : bat [: oid] , X 103
: bat [: str]) ;

5 X 87 : bat [: str] := s q l . bind (X 17 : int , "sys" : str , "orders" : str
, "o_orderpriority" : str , 0 : int) ;

6 X 105 : bat [: str] := a lgebra . p ro j e c t i onpa th (X 95 : bat [: oid] ,
C 85 : bat [: oid] , X 87 : bat [: str]) ;

7 X 108 : bat [: bit] := bat ca l c .==(X 105 : bat [: str] , "1-URGENT" :
str) ;

8 X 112 : bat [: bit] := bat ca l c .==(X 105 : bat [: str] , "2-HIGH" : str)
;

9 X 113 : bat [: bit] := bat ca l c . or (X 108 : bat [: bit] , X 112 : bat [:
bit]) ;

10 X 115 : bat [: bit] := bat ca l c . i s n i l (X 113 : bat [: bit]) ;
11 X 118 : bat [: bit] := bat ca l c . i f t h e n e l s e (X 115 : bat [: bit] , f a l s e

: bit , X 113 : bat [: bit]) ;
12 X 122 : bat [: bte] := bat ca l c . i f t h e n e l s e (X 118 : bat [: bit] , 1 : bte

, 0 : bte) ;
13 X 141 : bat [: hge] := aggr . subsum (X 122 : bat [: bte] , X 137 : bat [:

oid] , C 138 : bat [: oid] , t rue : bit , t rue : bit) ;
14 X 124 : bat [: bit] := bat ca l c . !=(X 105 : bat [: str] , "1-URGENT" :

str) ;
15 X 127 : bat [: bit] := bat ca l c . !=(X 105 : bat [: str] , "2-HIGH" : str)

;
16 X 128 : bat [: bit] := bat ca l c . and (X 124 : bat [: bit] , X 127 : bat [:

bit]) ;
17 X 130 : bat [: bit] := bat ca l c . i s n i l (X 128 : bat [: bit]) ;
18 X 133 : bat [: bit] := bat ca l c . i f t h e n e l s e (X 130 : bat [: bit] , f a l s e

: bit , X 128 : bat [: bit]) ;
19 X 136 : bat [: bte] := bat ca l c . i f t h e n e l s e (X 133 : bat [: bit] , 1 : bte

, 0 : bte) ;
20 X 144 : bat [: hge] := aggr . subsum (X 136 : bat [: bte] , X 137 : bat [:

oid] , C 138 : bat [: oid] , t rue : bit , t rue : bit) ;
21 (X 145 : bat [: str] , X 146 : bat [: oid] , X 147 : bat [: oid]) :=

a lgebra . s o r t (X 140 : bat [: str] , f a l s e : bit , f a l s e : bit) ;
22 X 150 : bat [: hge] := a lgebra . p r o j e c t i o n (X 146 : bat [: oid] , X 144

: bat [: hge]) ;
23 X 149 : bat [: hge] := a lgebra . p r o j e c t i o n (X 146 : bat [: oid] , X 141

: bat [: hge]) ;
24 X 148 : bat [: str] := a lgebra . p r o j e c t i o n (X 146 : bat [: oid] , X 140

: bat [: str]) ;
25 end user . s2 1 ;

Listing 8.3: MAL code of Q12 by MonetDB (cont.)

59

1 f unc t i on user . s16 1 () : void ;
2 X 15 : int := s q l . mvc () ;
3 C 16 : bat [: oid] := s q l . t i d (X 15 : int , "sys" : str , "partsupp" :

str) ;
4 X 19 : bat [: int] := s q l . bind (X 15 : int , "sys" : str , "partsupp" :

str , "ps_suppkey" : str , 0 : int) ;
5 X 28 : bat [: int] := a lgebra . p r o j e c t i o n (C 16 : bat [: oid] , X 19 :

bat [: int]) ;
6 X 63 : bat [: oid] := bat . mirror (X 28 : bat [: int]) ;
7 C 36 : bat [: oid] := s q l . t i d (X 15 : int , "sys" : str , "supplier" :

str) ;
8 X 45 : bat [: str] := s q l . bind (X 15 : int , "sys" : str , "supplier" :

str , "s_comment" : str , 0 : int) ;
9 X 51 : bat [: str] := a lgebra . p r o j e c t i o n (C 36 : bat [: oid] , X 45 :

bat [: str]) ;
10 C 55 : bat [: oid] := a lgebra . l i k e s e l e c t (X 51 : bat [: str] , n i l :BAT

, "%Customer%Complaints%" : str , "" : str , f a l s e : bit) ;
11 X 38 : bat [: int] := s q l . bind (X 15 : int , "sys" : str , "supplier" :

str , "s_suppkey" : str , 0 : int) ;
12 X 58 : bat [: int] := a lgebra . p ro j e c t i onpa th (C 55 : bat [: oid] ,

C 36 : bat [: oid] , X 38 : bat [: int]) ;
13 (X 60 : bat [: oid] , X 61 : bat [: oid]) := a lgebra . j o i n (X 28 : bat [:

int] , X 58 : bat [: int] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l :
lng) ;

14 X 64 : bat [: oid] := a lgebra . d i f f e r e n c e (X 63 : bat [: oid] , X 60 :
bat [: oid] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l : lng) ;

15 X 29 : bat [: oid] := s q l . b ind idxbat (X 15 : int , "sys" : str , "

partsupp" : str , "partsupp_ps_partkey_fkey" : str , 0 : int) ;
16 (X 32 : bat [: oid] , X 33 : bat [: oid]) := s q l . b ind idxbat (X 15 : int

, "sys" : str , "partsupp" : str , "partsupp_ps_partkey_fkey" :
str , 2 : int) ;

17 X 31 : bat [: oid] := s q l . b ind idxbat (X 15 : int , "sys" : str , "

partsupp" : str , "partsupp_ps_partkey_fkey" : str , 1 : int) ;
18 X 34 : bat [: oid] := s q l . d e l t a (X 29 : bat [: oid] , X 32 : bat [: oid] ,

X 33 : bat [: oid] , X 31 : bat [: oid]) ;
19 X 66 : bat [: oid] := a lgebra . p ro j e c t i onpa th (X 64 : bat [: oid] ,

C 16 : bat [: oid] , X 34 : bat [: oid]) ;
20 C 67 : bat [: oid] := s q l . t i d (X 15 : int , "sys" : str , "part" : str) ;
21 X 83 : bat [: int] := s q l . bind (X 15 : int , "sys" : str , "part" : str ,

"p_size" : str , 0 : int) ;
22 X 89 : bat [: int] := a lgebra . p r o j e c t i o n (C 67 : bat [: oid] , X 83 :

bat [: int]) ;
23 X 76 : bat [: str] := s q l . bind (X 15 : int , "sys" : str , "part" : str ,

"p_type" : str , 0 : int) ;
24 X 82 : bat [: str] := a lgebra . p r o j e c t i o n (C 67 : bat [: oid] , X 76 :

bat [: str]) ;
25 X 69 : bat [: str] := s q l . bind (X 15 : int , "sys" : str , "part" : str ,

"p_brand" : str , 0 : int) ;

Listing 8.4: MAL code of Q16 by MonetDB

60 8. Appendix

1 X 75 : bat [: str] := a lgebra . p r o j e c t i o n (C 67 : bat [: oid] , X 69 :
bat [: str]) ;

2 // Full scan

3 C 91 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 75 : bat [: str] , "Brand

#45" : str , "!=" : str) ;
4 C 96 : bat [: oid] := a lgebra . l i k e s e l e c t (X 82 : bat [: str] , C 91 :

bat [: oid] , "MEDIUM POLISHED%" : str , "" : str , t rue : bit) ;
5 // Candidate scan

6 C 99 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 49 : int , "==" : str) ;

7 // Candidate scan

8 C 102 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 14 : int , "==" : str) ;

9 X 103 : bat [: oid] := bat . mergecand (C 99 : bat [: oid] , C 102 : bat [:
oid]) ;

10 // Candidate scan

11 C 105 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 23 : int , "==" : str) ;

12 X 106 : bat [: oid] := bat . mergecand (X 103 : bat [: oid] , C 105 : bat
[: oid]) ;

13 // Candidate scan

14 C 108 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 45 : int , "==" : str) ;

15 X 109 : bat [: oid] := bat . mergecand (X 106 : bat [: oid] , C 108 : bat
[: oid]) ;

16 // Candidate scan

17 C 111 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 19 : int , "==" : str) ;

18 X 112 : bat [: oid] := bat . mergecand (X 109 : bat [: oid] , C 111 : bat
[: oid]) ;

19 // Candidate scan

20 C 114 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 3 : int , "==" : str) ;

21 X 115 : bat [: oid] := bat . mergecand (X 112 : bat [: oid] , C 114 : bat
[: oid]) ;

22 // Candidate scan

23 C 117 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 36 : int , "==" : str) ;

24 X 118 : bat [: oid] := bat . mergecand (X 115 : bat [: oid] , C 117 : bat
[: oid]) ;

25 // Candidate scan

26 C 120 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 89 : bat [: int] , C 96 :
bat [: oid] , 9 : int , "==" : str) ;

27 X 121 : bat [: oid] := bat . mergecand (X 118 : bat [: oid] , C 120 : bat
[: oid]) ;

28 X 125 : bat [: oid] := a lgebra . p r o j e c t i o n (X 121 : bat [: oid] , C 67 :
bat [: oid]) ;

Listing 8.5: MAL code of Q16 by MonetDB (cont. 1)

61

1 (X 126 : bat [: oid] , X 127 : bat [: oid]) := a lgebra . j o i n (X 66 : bat
[: oid] , X 125 : bat [: oid] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l
: lng) ;

2 X 135 : bat [: str] := a lgebra . p ro j e c t i onpa th (X 127 : bat [: oid] ,
X 121 : bat [: oid] , X 82 : bat [: str]) ;

3 X 136 : bat [: int] := a lgebra . p ro j e c t i onpa th (X 127 : bat [: oid] ,
X 121 : bat [: oid] , X 89 : bat [: int]) ;

4 X 132 : bat [: int] := a lgebra . p ro j e c t i onpa th (X 126 : bat [: oid] ,
X 64 : bat [: oid] , X 28 : bat [: int]) ;

5 X 134 : bat [: str] := a lgebra . p ro j e c t i onpa th (X 127 : bat [: oid] ,
X 121 : bat [: oid] , X 75 : bat [: str]) ;

6 (X 138 : bat [: oid] , C 139 : bat [: oid] , X 140 : bat [: lng]) := group
. group (X 134 : bat [: str]) ;

7 (X 141 : bat [: oid] , C 142 : bat [: oid] , X 143 : bat [: lng]) := group
. subgroup (X 132 : bat [: int] , X 138 : bat [: oid]) ;

8 (X 144 : bat [: oid] , C 145 : bat [: oid] , X 146 : bat [: lng]) := group
. subgroup (X 136 : bat [: int] , X 141 : bat [: oid]) ;

9 (X 147 : bat [: oid] , C 148 : bat [: oid] , X 149 : bat [: lng]) := group
. subgroupdone (X 135 : bat [: str] , X 144 : bat [: oid]) ;

10 X 150 : bat [: str] := a lgebra . p r o j e c t i o n (C 148 : bat [: oid] , X 134
: bat [: str]) ;

11 X 151 : bat [: str] := a lgebra . p r o j e c t i o n (C 148 : bat [: oid] , X 135
: bat [: str]) ;

12 X 152 : bat [: int] := a lgebra . p r o j e c t i o n (C 148 : bat [: oid] , X 136
: bat [: int]) ;

13 X 153 : bat [: int] := a lgebra . p r o j e c t i o n (C 148 : bat [: oid] , X 132
: bat [: int]) ;

14 (X 154 : bat [: oid] , C 155 : bat [: oid] , X 156 : bat [: lng]) := group
. group (X 150 : bat [: str]) ;

15 (X 157 : bat [: oid] , C 158 : bat [: oid] , X 159 : bat [: lng]) := group
. subgroup (X 152 : bat [: int] , X 154 : bat [: oid]) ;

16 (X 160 : bat [: oid] , C 161 : bat [: oid] , X 162 : bat [: lng]) := group
. subgroupdone (X 151 : bat [: str] , X 157 : bat [: oid]) ;

17 X 163 : bat [: str] := a lgebra . p r o j e c t i o n (C 161 : bat [: oid] , X 150
: bat [: str]) ;

18 X 164 : bat [: str] := a lgebra . p r o j e c t i o n (C 161 : bat [: oid] , X 151
: bat [: str]) ;

19 X 165 : bat [: int] := a lgebra . p r o j e c t i o n (C 161 : bat [: oid] , X 152
: bat [: int]) ;

20 X 166 : bat [: lng] := aggr . subcount (X 153 : bat [: int] , X 160 : bat
[: oid] , C 161 : bat [: oid] , t rue : bit) ;

21 (X 168 : bat [: lng] , X 169 : bat [: oid] , X 170 : bat [: oid]) :=
a lgebra . s o r t (X 166 : bat [: lng] , t rue : bit , f a l s e : bit) ;

22 (X 172 : bat [: str] , X 173 : bat [: oid] , X 174 : bat [: oid]) :=
a lgebra . s o r t (X 163 : bat [: str] , X 169 : bat [: oid] , X 170 : bat
[: oid] , f a l s e : bit , f a l s e : bit) ;

Listing 8.6: MAL code of Q16 by MonetDB (cont. 2)

62 8. Appendix

1 (X 175 : bat [: str] , X 176 : bat [: oid] , X 177 : bat [: oid]) :=
a lgebra . s o r t (X 164 : bat [: str] , X 173 : bat [: oid] , X 174 : bat
[: oid] , f a l s e : bit , f a l s e : bit) ;

2 (X 178 : bat [: int] , X 179 : bat [: oid] , X 180 : bat [: oid]) :=
a lgebra . s o r t (X 165 : bat [: int] , X 176 : bat [: oid] , X 177 : bat
[: oid] , f a l s e : bit , f a l s e : bit) ;

3 X 184 : bat [: lng] := a lgebra . p r o j e c t i o n (X 179 : bat [: oid] , X 166
: bat [: lng]) ;

4 X 183 : bat [: int] := a lgebra . p r o j e c t i o n (X 179 : bat [: oid] , X 165
: bat [: int]) ;

5 X 182 : bat [: str] := a lgebra . p r o j e c t i o n (X 179 : bat [: oid] , X 164
: bat [: str]) ;

6 X 181 : bat [: str] := a lgebra . p r o j e c t i o n (X 179 : bat [: oid] , X 163
: bat [: str]) ;

7 end user . s2 1 ;

Listing 8.7: MAL code of Q16 by MonetDB (cont. 3)

63

1 f unc t i on user . s19 1 () : void ;
2 X 18 : int := s q l . mvc () ;
3 X 46 : bat [: str] := s q l . bind (X 18 : int , "sys" : str , "part" : str ,

"p_container" : str , 0 : int) ;
4 X 39 : bat [: int] := s q l . bind (X 18 : int , "sys" : str , "part" : str ,

"p_size" : str , 0 : int) ;
5 X 32 : bat [: str] := s q l . bind (X 18 : int , "sys" : str , "part" : str ,

"p_brand" : str , 0 : int) ;
6 C 19 : bat [: oid] := s q l . t i d (X 18 : int , "sys" : str , "part" : str) ;
7 // Full scan with hash lookup

8 C 54 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 32 : bat [: str] , C 19 :
bat [: oid] , "Brand#12" : str , "==" : str) ;

9 // Column imprints with candidates

10 C 58 : bat [: oid] := a lgebra . s e l e c t (X 39 : bat [: int] , C 54 : bat [:
oid] , 1 : int , 5 : int , t rue : bit , t rue : bit , f a l s e : bit) ;

11 // Candidate scan

12 C 63 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 46 : bat [: str] , C 58 :
bat [: oid] , "SM CASE" : str , "==" : str) ;

13 // Candidate scan

14 C 65 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 46 : bat [: str] , C 58 :
bat [: oid] , "SM BOX" : str , "==" : str) ;

15 X 66 : bat [: oid] := bat . mergecand (C 63 : bat [: oid] , C 65 : bat [:
oid]) ;

16 // Candidate scan

17 C 68 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 46 : bat [: str] , C 58 :
bat [: oid] , "SM PACK" : str , "==" : str) ;

18 X 69 : bat [: oid] := bat . mergecand (X 66 : bat [: oid] , C 68 : bat [:
oid]) ;

19 // Candidate scan

20 C 71 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 46 : bat [: str] , C 58 :
bat [: oid] , "SM PKG" : str , "==" : str) ;

21 X 72 : bat [: oid] := bat . mergecand (X 69 : bat [: oid] , C 71 : bat [:
oid]) ;

22 X 22 : bat [: int] := s q l . bind (X 18 : int , "sys" : str , "part" : str ,
"p_partkey" : str , 0 : int) ;

23 X 73 : bat [: int] := a lgebra . p r o j e c t i o n (X 72 : bat [: oid] , X 22 :
bat [: int]) ;

24 X 114 : bat [: str] := s q l . bind (X 18 : int , "sys" : str , "lineitem" :
str , "l_shipmode" : str , 0 : int) ;

25 X 86 : bat [: lng] := s q l . bind (X 18 : int , "sys" : str , "lineitem" :
str , "l_quantity" : str , 0 : int) ;

26 X 107 : bat [: str] := s q l . bind (X 18 : int , "sys" : str , "lineitem" :
str , "l_shipinstruct" : str , 0 : int) ;

27 C 77 : bat [: oid] := s q l . t i d (X 18 : int , "sys" : str , "lineitem" :
str) ;

Listing 8.8: MAL code of Q19 by MonetDB

64 8. Appendix

1 // Candidate scan with hash lookup

2 C 122 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 107 : bat [: str] , C 77
: bat [: oid] , "TAKE BACK RETURN" : str , "==" : str) ;

3 // Column imprints with candidates

4 C 132 : bat [: oid] := a lgebra . s e l e c t (X 86 : bat [: lng] , C 122 : bat
[: oid] , 100 : lng , 1100 : lng , t rue : bit , t rue : bit , f a l s e : bit)
;

5 // Candidate scan with hash lookup

6 C 137 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 114 : bat [: str] ,
C 132 : bat [: oid] , "AIR" : str , "==" : str) ;

7 // Candidate scan with hash lookup

8 C 139 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 114 : bat [: str] ,
C 132 : bat [: oid] , "AIR REG" : str , "==" : str) ;

9 X 140 : bat [: oid] := bat . mergecand (C 137 : bat [: oid] , C 139 : bat
[: oid]) ;

10 X 79 : bat [: int] := s q l . bind (X 18 : int , "sys" : str , "lineitem" :
str , "l_partkey" : str , 0 : int) ;

11 X 141 : bat [: int] := a lgebra . p r o j e c t i o n (X 140 : bat [: oid] , X 79 :
bat [: int]) ;

12 (X 147 : bat [: oid] , X 148 : bat [: oid]) := a lgebra . j o i n (X 73 : bat
[: int] , X 141 : bat [: int] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l
: lng) ;

13 X 93 : bat [: lng] := s q l . bind (X 18 : int , "sys" : str , "lineitem" :
str , "l_extendedprice" : str , 0 : int) ;

14 X 158 : bat [: lng] := a lgebra . p ro j e c t i onpa th (X 148 : bat [: oid] ,
X 140 : bat [: oid] , X 93 : bat [: lng]) ;

15 X 100 : bat [: lng] := s q l . bind (X 18 : int , "sys" : str , "lineitem" :
str , "l_discount" : str , 0 : int) ;

16 X 159 : bat [: lng] := a lgebra . p ro j e c t i onpa th (X 148 : bat [: oid] ,
X 140 : bat [: oid] , X 100 : bat [: lng]) ;

17 X 170 : bat [: lng] := bat ca l c .−(100: lng , X 159 : bat [: lng]) ;
18 X 172 : bat [: hge] := bat ca l c . ∗ (X 158 : bat [: lng] , X 170 : bat [: lng

]) ;
19 X 174 : hge := aggr . sum(X 172 : bat [: hge]) ;
20 end user . s2 1 ;

Listing 8.9: MAL code of Q19 by MonetDB (cont.)

65

1 f unc t i on user . s22 1 () : void ;
2 X 25 : int := s q l . mvc () ;
3 C 26 : bat [: oid] := s q l . t i d (X 25 : int , "sys" : str , "customer" :

str) ;
4 X 39 : bat [: str] := s q l . bind (X 25 : int , "sys" : str , "customer" :

str , "c_phone" : str , 0 : int) ;
5 X 45 : bat [: str] := a lgebra . p r o j e c t i o n (C 26 : bat [: oid] , X 39 :

bat [: str]) ;
6 X 55 : bat [: str] := b a t s t r . s ub s t r i ng (X 45 : bat [: str] , 1 : int , 2 :

int) ;
7 // Full scan with hash lookup

8 C 59 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "13" :
str , "==" : str) ;

9 // Candidate scan with hash lookup

10 C 62 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "31" :
str , "==" : str) ;

11 X 63 : bat [: oid] := bat . mergecand (C 59 : bat [: oid] , C 62 : bat [:
oid]) ;

12 // Candidate scan with hash lookup

13 C 65 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "23" :
str , "==" : str) ;

14 X 66 : bat [: oid] := bat . mergecand (X 63 : bat [: oid] , C 65 : bat [:
oid]) ;

15 // Candidate scan with hash lookup

16 C 68 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "29" :
str , "==" : str) ;

17 X 69 : bat [: oid] := bat . mergecand (X 66 : bat [: oid] , C 68 : bat [:
oid]) ;

18 // Candidate scan with hash lookup

19 C 71 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "30" :
str , "==" : str) ;

20 X 72 : bat [: oid] := bat . mergecand (X 69 : bat [: oid] , C 71 : bat [:
oid]) ;

21 // Candidate scan with hash lookup

22 C 74 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "18" :
str , "==" : str) ;

23 X 75 : bat [: oid] := bat . mergecand (X 72 : bat [: oid] , C 74 : bat [:
oid]) ;

24 // Candidate scan with hash lookup

25 C 77 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , "17" :
str , "==" : str) ;

26 X 78 : bat [: oid] := bat . mergecand (X 75 : bat [: oid] , C 77 : bat [:
oid]) ;

27 X 29 : bat [: int] := s q l . bind (X 25 : int , "sys" : str , "customer" :
str , "c_custkey" : str , 0 : int) ;

28 X 79 : bat [: int] := a lgebra . p ro j e c t i onpa th (X 78 : bat [: oid] ,
C 26 : bat [: oid] , X 29 : bat [: int]) ;

Listing 8.10: MAL code of Q22 by MonetDB

66 8. Appendix

1 X 145 : bat [: oid] := bat . mirror (X 79 : bat [: int]) ;
2 X 46 : bat [: lng] := s q l . bind (X 25 : int , "sys" : str , "customer" :

str , "c_acctbal" : str , 0 : int) ;
3 X 52 : bat [: lng] := a lgebra . p r o j e c t i o n (C 26 : bat [: oid] , X 46 :

bat [: lng]) ;
4 X 81 : bat [: lng] := a lgebra . p r o j e c t i o n (X 78 : bat [: oid] , X 52 :

bat [: lng]) ;
5 X 137 : bat [: dbl] := bat ca l c . dbl (2 : int , X 81 : bat [: lng]) ;
6 // Column imprints

7 C 101 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 52 : bat [: lng] , 0 : lng
, ">" : str) ;

8 // Candidate scan with hash lookup

9 C 109 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "13" : str , "==" : str) ;

10 // Candidate scan with hash lookup

11 C 112 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "31" : str , "==" : str) ;

12 X 113 : bat [: oid] := bat . mergecand (C 109 : bat [: oid] , C 112 : bat
[: oid]) ;

13 // Candidate scan with hash lookup

14 C 115 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "23" : str , "==" : str) ;

15 X 116 : bat [: oid] := bat . mergecand (X 113 : bat [: oid] , C 115 : bat
[: oid]) ;

16 // Candidate scan with hash lookup

17 C 118 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "29" : str , "==" : str) ;

18 X 119 : bat [: oid] := bat . mergecand (X 116 : bat [: oid] , C 118 : bat
[: oid]) ;

19 // Candidate scan with hash lookup

20 C 121 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "30" : str , "==" : str) ;

21 X 122 : bat [: oid] := bat . mergecand (X 119 : bat [: oid] , C 121 : bat
[: oid]) ;

22 // Candidate scan with hash lookup

23 C 124 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "18" : str , "==" : str) ;

24 X 125 : bat [: oid] := bat . mergecand (X 122 : bat [: oid] , C 124 : bat
[: oid]) ;

25 // Candidate scan with hash lookup

26 C 127 : bat [: oid] := a lgebra . t h e t a s e l e c t (X 55 : bat [: str] , C 101
: bat [: oid] , "17" : str , "==" : str) ;

27 X 128 : bat [: oid] := bat . mergecand (X 125 : bat [: oid] , C 127 : bat
[: oid]) ;

28 X 130 : bat [: lng] := a lgebra . p r o j e c t i o n (X 128 : bat [: oid] , X 52 :
bat [: lng]) ;

Listing 8.11: MAL code of Q22 by MonetDB (cont. 1)

67

1 X 131 : bat [: dbl] := bat ca l c . dbl (2 : int , X 130 : bat [: lng]) ;
2 X 135 : dbl := aggr . avg (X 131 : bat [: dbl]) ;
3 X 136 : bat [: dbl] := s q l . s i n g l e (X 135 : dbl) ;
4 (X 138 : bat [: oid] , X 139 : bat [: oid]) := a lgebra . t h e t a j o i n (

X 137 : bat [: dbl] , X 136 : bat [: dbl] , n i l :BAT, n i l :BAT, 1 : int
, t rue : bit , n i l : lng) ;

5 C 146 : bat [: oid] := a lgebra . i n t e r s e c t (X 145 : bat [: oid] , X 138 :
bat [: oid] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l : lng) ;

6 X 148 : bat [: int] := a lgebra . p r o j e c t i o n (C 146 : bat [: oid] , X 79 :
bat [: int]) ;

7 X 169 : bat [: oid] := bat . mirror (X 148 : bat [: int]) ;
8 C 151 : bat [: oid] := s q l . t i d (X 25 : int , "sys" : str , "orders" : str

) ;
9 X 153 : bat [: int] := s q l . bind (X 25 : int , "sys" : str , "orders" :

str , "o_custkey" : str , 0 : int) ;
10 X 159 : bat [: int] := a lgebra . p r o j e c t i o n (C 151 : bat [: oid] , X 153

: bat [: int]) ;
11 (X 167 : bat [: oid] , X 168 : bat [: oid]) := a lgebra . j o i n (X 148 : bat

[: int] , X 159 : bat [: int] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l
: lng) ;

12 X 170 : bat [: oid] := a lgebra . d i f f e r e n c e (X 169 : bat [: oid] , X 167
: bat [: oid] , n i l :BAT, n i l :BAT, f a l s e : bit , n i l : lng) ;

13 X 172 : bat [: str] := a lgebra . p ro j e c t i onpa th (X 170 : bat [: oid] ,
C 146 : bat [: oid] , X 78 : bat [: oid] , X 45 : bat [: str]) ;

14 X 176 : bat [: str] := b a t s t r . s ub s t r i ng (X 172 : bat [: str] , 1 : int ,
2 : int) ;

15 (X 179 : bat [: oid] , C 180 : bat [: oid] , X 181 : bat [: lng]) := group
. groupdone (X 176 : bat [: str]) ;

16 X 182 : bat [: str] := a lgebra . p r o j e c t i o n (C 180 : bat [: oid] , X 176
: bat [: str]) ;

17 X 183 : bat [: lng] := aggr . subcount (X 179 : bat [: oid] , X 179 : bat
[: oid] , C 180 : bat [: oid] , f a l s e : bit) ;

18 X 173 : bat [: lng] := a lgebra . p ro j e c t i onpa th (X 170 : bat [: oid] ,
C 146 : bat [: oid] , X 81 : bat [: lng]) ;

19 X 185 : bat [: hge] := aggr . subsum (X 173 : bat [: lng] , X 179 : bat [:
oid] , C 180 : bat [: oid] , t rue : bit , t rue : bit) ;

20 (X 188 : bat [: str] , X 189 : bat [: oid] , X 190 : bat [: oid]) :=
a lgebra . s o r t (X 182 : bat [: str] , f a l s e : bit , f a l s e : bit) ;

21 X 193 : bat [: hge] := a lgebra . p r o j e c t i o n (X 189 : bat [: oid] , X 185
: bat [: hge]) ;

22 X 192 : bat [: lng] := a lgebra . p r o j e c t i o n (X 189 : bat [: oid] , X 183
: bat [: lng]) ;

23 X 191 : bat [: str] := a lgebra . p r o j e c t i o n (X 189 : bat [: oid] , X 182
: bat [: str]) ;

24 end user . s2 1 ;

Listing 8.12: MAL code of Q22 by MonetDB (cont. 2)

68 8. Appendix

Bibliography

[Aba08] Daniel J. Abadi. Query execution in column-oriented database systems.
PhD thesis, Massachusetts Institute of Technology, 2008. (cited on

Page 4)

[ABH09] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column-
oriented database systems. Proceedings of the VLDB Endowment,
2(2):1664–1665, August 2009. (cited on Page 4)

[ADH02] Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. Data page
layouts for relational databases on deep memory hierarchies. The
VLDB Journal—The International Journal on Very Large Data Bases,
11(3):198–215, 2002. (cited on Page xi, 4, and 5)

[ADHS01] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Sk-
ounakis. Weaving relations for cache performance. In VLDB, volume 1,
pages 169–180, 2001. (cited on Page 3 and 5)

[AMH08] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-
stores vs. row-stores: How different are they really? In Proceedings of
the International Conference on Management of Data, SIGMOD ’08,
pages 967–980. ACM, 2008. (cited on Page 3)

[Ams97] CWI Amsterdam. MonetDB. https://github.com/MonetDB/MonetDB,
1997. (cited on Page 8)

[APM16] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the
archipelago between row-stores and column-stores for hybrid work-
loads. In Proceedings of the International Conference on Management
of Data, pages 583–598. ACM, 2016. (cited on Page 4 and 5)

[BBK98] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The
pyramid-technique: Towards breaking the curse of dimensionality. In
ACM SIGMOD Record, volume 27, pages 142–153. ACM, 1998. (cited

on Page 10)

[BBR+13] Sebastian Breß, Felix Beier, Hannes Rauhe, Kai-Uwe Sattler, Eike
Schallehn, and Gunter Saake. Efficient co-processor utilization in
database query processing. Information Systems, 38(8):1084–1096,
2013. (cited on Page 52)

70 Bibliography

[BGVK+06] Peter A. Boncz, Torsten Grust, Maurice Van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: A fast XQuery
processor powered by a relational engine. In Proceedings of the interna-
tional conference on Management of data, pages 479–490. ACM, 2006.
(cited on Page 6)

[BK94] Peter A. Boncz and Martin L. Kersten. Monet. An impressionist sketch
of an advanced database system. In Proceedings of the IEEE BIWIT
workshop. Citeseer, 1994. (cited on Page 5, 6, and 8)

[BK99] Peter A. Boncz and Martin L. Kersten. MIL primitives for querying a
fragmented world. The VLDB Journal—The International Journal on
Very Large Data Bases, 8(2):101–119, 1999. (cited on Page xi, 5, 6, 7,

and 9)

[BKH+14] Sebastian Breß, Bastian Köcher, Max Heimel, Volker Markl, Michael
Saecker, and Gunter Saake. Ocelot/HyPE: Optimized data processing
on heterogeneous hardware. Proceedings of the VLDB Endowment,
7(13):1609–1612, 2014. (cited on Page 52)

[BKSS17] David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler. Ac-
celerating multi-column selection predicates in main-memory - the Elf
approach. In Data Engineering (ICDE), 2017 IEEE 33rd International
Conference on, pages 647–658. IEEE, 2017. (cited on Page xi, 10, 11, 12,

18, 26, 27, 29, and 37)

[BQK96] Peter A. Boncz, Wilko Quak, and Martin L. Kersten. Monet and its
geographical extensions: A novel approach to high performance GIS
processing. In International Conference on Extending Database Tech-
nology, pages 145–166. Springer, 1996. (cited on Page 7 and 51)

[BZN05] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-pipelining query execution. In Proceedings of the Conference
on Innovative Data Systems Research, volume 5, pages 225–237, 2005.
(cited on Page 52)

[CK85] George P. Copeland and Setrag N. Khoshafian. A decomposition stor-
age model. In Proceedings of the International Conference on Man-
agement of Data, SIGMOD ’85, pages 268–279, New York, NY, USA,
1985. ACM. (cited on Page 4)

[CMK+15] Robin Cijvat, Stefan Manegold, Martin L. Kersten, Gunnar W Klau,
Alexander Schönhuth, Tobias Marschall, and Ying Zhang. Genome
sequence analysis with MonetDB. Datenbank-Spektrum, 15(3):185–191,
2015. (cited on Page 51)

[Cou14] Transaction Processing Performance Council. TPC benchmark H-
standard specification

”
2014. (cited on Page 37)

Bibliography 71

[GKP+10] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe
Cudre-Mauroux, and Samuel Madden. HYRISE: A main memory hy-
brid storage engine. Proceedings of the VLDB Endowment, 4(2):105–
116, 2010. (cited on Page 5)

[GKS16] Mrunal Gawade, Martin L. Kersten, and Alkis Simitsis. Multi-core
column-store parallelization under concurrent workload. In Proceed-
ings of the 12th International Workshop on Data Management on New
Hardware, page 1. ACM, 2016. (cited on Page 6)

[GVK+14] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph
Tucek, Mark Lillibridge, and Alistair Veitch. In-memory performance
for big data. Proceedings of the VLDB Endowment, 8(1):37–48, 2014.
(cited on Page 7)

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the unde-
finedness of C. In ACM SIGPLAN Notices, volume 50, pages 336–345.
ACM, 2015. (cited on Page 23)

[HP03] Richard A. Hankins and Jignesh M. Patel. Data morphing: An adap-
tive, cache-conscious storage technique. In Proceedings of the 29th
VLDB conference, pages 417–428. VLDB Endowment, 2003. (cited

on Page 5)

[HSP+13] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and
Volker Markl. Hardware-oblivious parallelism for in-memory column-
stores. Proceedings of the VLDB Endowment, 6(9):709–720, 2013.
(cited on Page 6 and 52)

[IGN+12] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd
Mullender, Martin Kersten, et al. MonetDB: Two decades of research
in column-oriented database architectures. A Quarterly Bulletin of the
IEEE Computer Society Technical Committee on Database Engineer-
ing, 35(1):40–45, 2012. (cited on Page 5, 6, 9, and 18)

[IKM09] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-
organizing tuple reconstruction in column-stores. In Proceedings of
the International Conference on Management of data, pages 297–308.
ACM, 2009. (cited on Page 6)

[Int16] Intel. Intel 64 and IA-32 architectures optimization reference manual,
2016. (cited on Page 40)

[LIMK12] Erietta Liarou, Stratos Idreos, Stefan Manegold, and Martin L. Ker-
sten. MonetDB/Datacell: Online analytics in a streaming column-
store. Proceedings of the VLDB Endowment, 5(12):1910–1913, 2012.
(cited on Page 52)

[LP13] Yinan Li and Jignesh M. Patel. BitWeaving: Fast scans for main mem-
ory data processing. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data, pages 289–300. ACM,
2013. (cited on Page 1 and 51)

72 Bibliography

[MBK00a] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing
database architecture for the new bottleneck: memory access. The
VLDB Journal—The International Journal on Very Large Data Bases,
9(3):231–246, 2000. (cited on Page 1)

[MBK00b] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. What hap-
pens during a join? Dissecting CPU and memory optimization effects.
In Proceedings of the 26th international conference on very large data
bases, pages 339–350. Morgan Kaufmann Publishers Inc., 2000. (cited

on Page 7)

[Pla09] Hasso Plattner. A common database approach for OLTP and OLAP
using an in-memory column database. In Proceedings of the Inter-
national Conference on Management of data, pages 1–2. ACM, 2009.
(cited on Page 3 and 4)

[SBKZ08] Jan Schaffner, Anja Bog, Jens Krüger, and Alexander Zeier. A hybrid
row-column OLTP database architecture for operational reporting. In
International Workshop on Business Intelligence for the Real-Time En-
terprise, pages 61–74. Springer, 2008. (cited on Page 3, 4, and 10)

[SDRK02] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:
Shrinking the petacube. In Proceedings of the International Conference
on Management of Data, pages 464–475, June 2002. (cited on Page 11)

[SK13] Lefteris Sidirourgos and Martin L. Kersten. Column imprints: A sec-
ondary index structure. In Proceedings of the International Conference
on Management of Data, pages 893–904. ACM, 2013. (cited on Page 1,

9, and 10)

[ZBNH05] Marcin Zukowski, Peter A. Boncz, Niels Nes, and Sándor Héman. Mon-
etDB/X100: A DBMS in the CPU cache. IEEE Data Engineering
Bulletin, 28(2):17–22, 2005. (cited on Page 52)

[ZvdWB12] Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz. Vectorwise:
A vectorized analytical DBMS. In IEEE 28th International Conference
on Data Engineering, pages 1349–1350. IEEE, 2012. (cited on Page 52)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 11. Mai 2018

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 DBMS storage models
	2.1.1 N-ary storage model (NSM)
	2.1.2 Decomposed storage model (DSM)
	2.1.3 Alternative storage models

	2.2 MonetDB - A column-store DBMS
	2.2.1 Data model
	2.2.2 Architecture
	2.2.3 MonetDB assembly language (MAL)
	2.2.3.1 MAL type system
	2.2.3.2 MAL operators and language framework

	2.2.4 Optimization Pipeline

	2.3 Elf - A multi-dimensional query structure
	2.3.1 Concept of Elf
	2.3.2 Optimized memory layout
	2.3.3 Construction
	2.3.4 Querying
	2.3.5 Update operations

	3 Integrating Elf into MonetDB
	3.1 Storage of Elf
	3.1.1 Extending MonetDB's SQL structures
	3.1.2 Loading data into Elf

	3.2 Modifying MonetDB's query execution pipeline
	3.2.1 Parser extensions
	3.2.2 Relation and expression tree
	3.2.3 MAL generation
	3.2.3.1 MonetDB's MAL statements
	3.2.3.2 MAL bindings for Elf
	3.2.3.3 Statement generation for SELECT statements

	3.2.4 Query execution

	3.3 Storing non-integral values in Elf
	3.3.1 Index-mapping to obtain ordering
	3.3.2 Resolving indexes at runtime

	4 Query optimization for Elf
	4.1 Merging different query types for traversal
	4.1.1 Merging window queries
	4.1.2 Merging in-queries
	4.1.3 Merging column-column queries
	4.1.4 Optimizing interop with MonetDB query execution
	4.1.5 Distributively reordering where clauses

	4.2 Optimizing Elf traversal
	4.2.1 Determining cut-off column for early termination
	4.2.2 Small string optimization

	5 Evaluation
	5.1 Evaluation setup
	5.1.1 Dataset and selected queries
	5.1.2 Testing variants and expected results
	5.1.3 Evaluation procedure

	5.2 Experiments
	5.2.1 Index-based vs. resolve-based
	5.2.2 Comparison of optimizations
	5.2.3 Small String Optimization
	5.2.4 Size scaling

	5.3 Discussion
	5.4 Threats to validity
	5.4.1 Internal validity
	5.4.2 External validity

	6 Related Work
	7 Conclusion
	7.1 Future work

	8 Appendix
	Bibliography

