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Abstract

Selecting the right vertical partitioning scheme is one of the core database optimization
problems. It is especially significant because when the workload matches the partitioning,
the processing is able to skip unnecessary data, and hence it can be faster [Bel09]. During
the last four decades numerous different algorithms have been proposed to reach efficiently
the optimal vertical partitioning. Mainly these algorithms rely on two aspects. On
one side, cost models, which approximate how well a workload might be supported
with a given configuration. On the other side, they rely on pruning heuristics that
are able to narrow down the combinatorial search space, trading optimality for lesser
runtime complexity [GCNG16]. Nowadays modified and improved variations of these
methods can be expected to be included in commercial DBMSs [ANY04b, JQRD11]
(although precise information on the solutions used by commercial systems are kept
confidential [BAA12a]). Nonetheless, though these methods are efficient, they do not
employ any machine learning technique, and thus are unable to improve their performance
based on previous executions, nor are they able to be learn from cost-model errors.

Deep reinforcement learning (DRL) methods could address these limitations, while
still providing an optimal and timely solution. In our research we aim to evaluate the
feasibility of using DRL methods for self-driving vertical partitioning. To this end we
propose a novel design that maps the process from the current domain to the domain
of DRL. Furthermore, we validate our design experimentally by studying the training
and the inference process for a given TPC-H data and workload, on a prototype we
implement using Open AI Gym, and the Google Dopamine framework for DRL.

We train 3 different DQN agents for bottom-up partitioning with 3 selected cases: a
fixed workload and table, a set of fixed workload and tables, and finally a fixed table
with a random workload. We find that convergence is easily achievable for the first two
scenarios, but that generalizing to random workloads requires further work. In addition,
we report the impact of hyperparameters in the convergence.

Regarding inference we compare the predictions of our agents with that of state-of-the-art
algorithms like HillClimb, AutoPart and O2P [JPPD], finding that our agents have
indeed learned the optima during the training carried out. We also report competitive
runtimes for our agents on both GPU and CPU inference, which are able to outperform
some state of the art algorithms, and the brute-force algorithm as the table size increases.
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1. Introduction

In this chapter, we provide the motivation for our work. We start by introducing
the three main approaches (manual, partially or fully automated) to selecting design
configurations, presenting the vertical partitioning task as an optimization problem
and the idea of applying deep reinforcement learning for solving this problem in a fully
automated manner. We also establish the assumptions of our study, providing the scope
for our work (Section 1.1). Next, we outline the contributions of this thesis (Section 1.2),
followed by a description of the methodology that we adopted (Section 1.3). We conclude
this chapter by presenting the structure for the subsequent chapters (Section 1.4).

1.1 Motivation

With the digitization of all aspects of life, both companies and end-users require efficient
and scalable data management tools that could assist them in understanding their latest
information either through traditional SQL querying, or through more complex kinds of
analysis.

One essential component for the efficiency of these tools is their physical design (i.e.,
how logical database models are actually mapped to be stored and represented in
memory). On live systems, database administrators and developers must perform several
physical design tasks. These tasks are concerned with selecting physical configurations
of a database on the storage system, with the goal of making a selection that benefits
the expected workload (i.e., that helps to improve the memory footprint, runtime
of operations, or maintainability). This includes tasks like: index selection, data
partitioning, materialized views definition, data layout selection, among others.

For effective design and tuning it is required to understand database workloads. [KS86].
If a database’s physical design is not being properly maintained (i.e, when the physical
design does not matches adequately the workload), degradation of performance can
occur, leading to less efficient data management systems. On a practical side, this
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implies that when considering rapidly changing workloads, database administrators and
developers face several challenges, such as: evaluating at great speed a high number of
possible configurations to determine the best, dealing with possible correlation between
configurable parameters[VAPGZ17], and finally facing to the uncertainty of predicting
the impact of configurations by using cost models and assumptions that might not fully
match the real-world database system (i.e., as happens for other database choices, like
join order optimization with mistaken cardinality estimates[Loh14]).

To alleviate these challenges research has proposed two approaches that extend the
purely manual configuration management (i.e., the case where database administrators
and developers are not supported for configuring the system). The first approach is the
use of partially automated tools, such as database tuning advisors, which recommend
database administrators certain configurations based on an expected workload[ABCN06].
This is usually done in a batch-wise fashion. The second approach is the use of fully
automated solutions. From this last group solutions can either follow a heuristic-driven
approach, which means that they do not use machine learning models and are based on
domain-specific knowledge; or they can adopt a self-driving approach, which proposes
to let the database itself deal with configuration choices automatically[PAA+17], in an
online manner, by using machine learning models and letting the optimizers learn from
their mistakes, without involving the database administrators.

Tools produced by the first approach have been shown to create difficulties for database
administrators, such as inaccurate estimates or failures in modeling update costs, creating
unpredictable results [BAA12b].

The second approach, and specifically the self-driving design, though still in active
development, seems specially promising as it could speed the time-to-deployment of
configuration changes and, through the use of continuous learning, it could address
failures of partially automated solutions.

In this thesis we research on the task of developing a self-driving tool to aid in a specific
physical design case which, to date, has mostly been studied following a batch-wise,
either heuristic-driven or partially automated approach: vertical partitioning. This is the
problem of finding the optimal combination of column groups (i.e., vertical partitions),
for an expected database workload. This choice is highly relevant, since it can achieve
to optimize the amount of data that needs to be considered by a workload, helping to
avoid the loading of unnecessary column groups.

Vertical partitioning is not a new optimization problem, and researchers have offered
many different algorithms and solutions during the last forty years, like one of the first
works by Hammer and Niamir[HN79a]. At its core, this optimization problem consists
of evaluating with a cost model the combinatorial space of possible column groupings
and determining which solution is estimated to be the best.

One of the biggest problems that algorithmic solutions face here is to find the right
trade-off between the robustness of the solution (i.e., optimality) and optimization
complexity[JPPD]. There are many popular non-machine learning based approaches
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for choosing the optimal vertical partition in a database relation, by using different
heuristics that prune the search space of possible solutions that are evaluated.

For our study, following the goal of adopting a machine learning solution to this problem,
we propose to study the applicability of a reinforcement learning (RL) model for mapping
a traditional vertical partitioning solution to a self-driving solution. RL is one of the three
main types of machine learning (i.e., apart from supervised and unsupervised learning),
where models are trained using a system of rewards, obtained through interactions with
an environment. Here RL is intended to aid in helping the model to navigate efficiently
a search space, by learning the long-term value of a given action in a state; such that
after a model is trained, online predictions can be made without exploring the complete
search space. In specific, we decompose the recommendation for a complete partitioning
scheme, into the recommendation of piece-wise actions (in a discrete action space) that
when applied, should result in increasing improvements in the partitioning scheme and,
by the end of our recommendations, in an optimal partitioning.

However, there are challenges in adopting a traditional RL solution: On one hand, the
challenge of learning over a large action-state space (as the number of columns increases),
which, in the absence of a function approximation, would require very large storage and
numerous training episodes to explore such vast search space. On the other hand, there
is also the challenge of feature selection (i.e., choosing the most informative features
from the workload, device, database system and table description, that would help the
self-driving component to learn from real-world observations, instead of from a synthetic
cost-model alone).

For this reason we select for our study a specific approach to RL: deep reinforcement
learning (DRL); an approach in which neural networks perform function approximation,
bounding the storage requirements of the model, and aiding in the generalization of
experience to unvisited states[FLHI+18].

With our research we aim to establish whether building a DRL vertical partitioning
solution is feasible and convergence during training can be achieved. For accomplishing
this we also seek to design (and validate such design) solutions for aspects such as:
how to accomplish normalization of rewards across different states (i.e., tables with
different characteristics)? Finally, by developing a prototype, we also aim to study how
competitive, in terms of the optimality of the solutions and of optimization time, is our
proposed DRL approach over traditional algorithms.

In order to carry out our research we make several assumptions:

• We focus solely on a DRL solution for self-driving vertical partitioning. We do
not consider neither in our study, nor in our discussion, the possibility of using
alternative models (e.g. other RL approaches, genetic algorithms, frequent pattern
mining, or clustering-based solutions).

• We limit our implementation and design to only use a synthetic cost model,
specifically an HDD cost model (i.e., instead of a real world signal, like the
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execution time for a set of queries). Our use of a cost model for training has some
implications that limit the generality of our current study:

– We only evaluate using this cost model, and meta-data about the TPC-H
tables and workload, instead of actually evaluating our recommendations on
a database system. By removing this assumption it is possible that some
changes could occur to our formulation (e.g. training might have to be done
over logs), and convergence might require more training effort (i.e., since
real-world signal can be noisy and influenced by external variables, when
compared to synthetic cost models).

– We limit our features to a small set that includes, for table description,
attribute sizes and number of rows, and for workload description, only a
group of queries which are simplified to be represented as a set of flags
indicating for each query whether an attribute was chosen or not. This
selection makes our current solution comparable (in terms of features used)
to traditional vertical partitioning algorithms [JPPD]. When moving beyond
a cost model, it can be possible to expand the feature set (e.g. adding the
selectivity of queries) without too many changes to our proposed DRL model.

– In the current implementation we do not consider costs or penalties for
performing actions. It seems likely that this can be added to our formulation
in future work, without affecting the main design choices.

• In the same way that most traditional vertical partitioning algorithms, we assume
a fixed workload, deterministic state transitions and complete state observability.
Changes in these assumptions could be added (should they be relevant for a given
partitioning use case), as extensions to our model, in future work.

• We evaluate our design only on state-of-the-art DQN agents, without consid-
ering alternative (e.g. model-based solutions) or more specialized DRL agent
designs (e.g. the Wolpertinger architecture for learning over large discrete action
spaces[DAEvH+15]). In addition we do not consider further solutions that could
include hierarchical task design, or multi-agent scenarios.

• We model our solution to encompass only bottom-up vertical partitioning (i.e.,
merging of attributes, assuming that the system starts entirely in a column-only
way).

• Due to time and resource constraints, we only evaluate the impact a very limited
set of hyper-parameters, over default configurations of the selected reinforcement
learning framework. Similarly, we reuse available neural network designs which
were originally tailored to learning from pixels in arcade games with the Arcade
Learning Environments[CMG+18, BNVB13].

These assumptions provide the scope for our research, and outline aspects that can be
considered in future work, building on our findings.
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1.2 Our contributions

Our contributions can be listed as follows:

• We propose a novel design for action space (with only actions that allow merging
of fragments, which amounts to a bottom-up approach), observation space, and
rewarding scheme, that facilitates the task transfer from traditional vertical parti-
tioning algorithms to a reinforcement learning formulation. In addition, we provide
a concept for how the knowledge of an expert can be included in the rewarding
scheme, leading to a normalization of the rewards across different cases.

• We offer a prototypical implementation of our solution using Open AI Gym and
the Google Dopamine framework for reinforcement learning, employing 3 agents
based on variations over DQN. Using this implementation we provide early results
regarding the ease of the agents to converge to a solution during training, for
vertical partitioning on TPC-H tables and workloads.

• We demonstrate empirically the ability of our agents to predict the optimal
partitioning, once trained, for the selected cases.

• We report the inference time taken once the agent is trained, using CPU and GPU
executions, compared to state-of-the-art implementations of vertical partitioning
algorithms. We evaluate how this performance changes with regards to the size of
the table.

• We provide first results regarding the ability of the agents to be trained as general
agents, for all possible workloads over a given table.

Hence we scope our work to the design of an environment, the evaluation for training
and inference for a given set of tables, either considering a fixed workload per table, or
given a table, considering varying workloads; and a comparison with existing algorithms
in terms of resulting partitions and optimization time.

1.3 Research Methodology

We follow the CRISP-DM [Wir00] process model as our research methodology. This
method is mainly applied for data mining projects and has already become standardized.
Though our project is not strictly a data mining project, we decided that due to the
generality of CRISP-DM, it could be easily adopted to guide this study.

Below we detail the phases of CRISP-DM (Figure 1.1), as we adopt them for our
research.

1https://en.wikipedia.org/wiki/Cross-industry standard process for data mining

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
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Figure 1.1: CRISP-DM Process Diagram
1

• Business understanding
In this phase we need to answer to the following question: What are the current
state-of-the art algorithms for database vertical partitioning, and how could we
categorize them? In addition we study reinforcement learning (Chapter 2).

• Data understanding
Here we study the TPC-H benchmark, the tables and queries, and the hyper-
parameters available for our models (Chapter 4).

• Data preparation Modeling
In this phase we develop the detailed design and concept for our solution (Chap-
ter 3). Since this is closely tied to our choice of baseline and implementation with
Google Dopamine, we include in this phase some study of such framework.

• Evaluation
In this phase we concern ourselves with comparing the performance of the discussed
DRL agents, with each other, as well as against adapted versions of traditional
vertical partitioning algorithms (Chapter 5).
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1.4 Thesis structure

The rest of the thesis is structured as follows:

• In Chapter 2 we give document some necessary background information. Mainly,
we discuss traditional approaches to database vertical partitioning, and we establish
the basic necessary RL and DRL concepts.

• In Chapter 3 we present the detailed design of our solution, describing the obser-
vation space, the action space and semantics of actions and the rewarding scheme
we designed. Since the design is closely related to some implementation aspects, in
this chapter we also introduce the Google Dopamine framework, and our choices
in selecting vertical partitioning algorithms as baselines.

• In Chapter 4 we introduce the precise research questions that will be answered by
our evaluation. We also describe the benchmarking data selected, the experimental
setup for our study and some relevant implementation details.

• Chapter 5 is dedicated to our experiments using different TPC-H tables, workloads
and hyper parameters. In this chapter we report and discuss our experimental
results, answering to our research questions.

• In Chapter 6 we discuss related work in applying reinforcement learning methods for
different kind of database problems, providing a better context to understand our
research results and the outlook of our work. For keeping a cohesive presentation
of our work, we place the majority of our studies on database self-driving tasks in
this section.

• In Chapter 7 we conclude this thesis and give the further directions for future
research.
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2. Background

In this chapter, we present a brief overview of the theoretical background and state of
the art relevant to this thesis. We organize this chapter as follows:

• Horizontal and vertical partitioning:
We start by describing the general goal and workings of partitioning approaches
(Section 2.1).

• Vertical partition optimization algorithms:
We follow by describing in detail four chosen vertical partitioning algorithms. This
is important since these algorithms are the state of the art, and they represent the
baseline for evaluating our DRL-based solutions (Section 2.2).

• Reinforcement Learning:
Next, we discuss the fundamental ideas behind reinforcement learning and deep
reinforcement learning methods, as they are relevant to our research (Section 2.3).

• Summary
We conclude this chapter by summarizing our studies (Section 2.4).

2.1 Horizontal and vertical partitioning

One central problem in database physical performance optimization is that of dividing
an existing logical relation into optimally-defined physical partitions. The main purpose
of this operation is to reduce I/O related costs, by keeping in memory only data that is
relevant to an expected workload.

There are several partitioning strategies, but the two basic ones for relational data are
horizontal and vertical partitioning [NCWD84a]. Horizontal partitioning is the process
of dividing a relation into a set of tuples, called fragments, where each fragment has the
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same attributes as the original relation [NCWD84a]. Here each tuple must belong to
at least one of the fragments defined, such that we are able to reconstruct the original
relation after its partitioning [KS86].

As a basic illustration, a generic employee relation (as shown in Figure 2.1) could be
splitted into two fragments based on the id attribute, as follows:

employee1 = σid<4(employee)
employee2 = σid>4(employee)

These fragments could be disjoint or not, with the latter case occurring when one
particular tuple is simultaneously assigned to several fragments. Generally, for horizontal
fragmentation we employ a selection predicate for a global relation r. This is sufficiently
expressive to encompass range-based partitioning (i.e., where a range of values from an
attribute is used for partitioning) or set-based partitioning (i.e., where sets of individual
values are used for partitioning).

The reconstruction of the original relation r is done by simply computing the union of
fragments:

r = r1 ∪ r2 ∪ ... ∪ rn (2.1)

Horizontal partitioning can be used for distributed database scenarios, when data is
accessed from geographically separated places, and it makes sense to provide the user
with data closer to him/her location, to avoid overheads from network latencies. Such
practice is also done by default with hash-based row-group sharding in NoSQL systems,
like Amazon Dynamo[DHJ+07]. In these cases replication is also done, for improving
availability, and the consistency between replicas needs to be managed with consensus
protocols.

The problem of finding the optimal horizontal partitioning has been shown to be
NP-complete [SW85].

Figure 2.1: Example of horizontal partitioning
1

1https://blog.marksylee.com/2017/01/28/structures-n-architectures-for-optimizing-database-en/

https://blog.marksylee.com/2017/01/28/structures-n-architectures-for-optimizing-database-en/
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In comparison to horizontal partitioning, vertical partitioning is the process of dividing
the attributes of a logical relation into several physical tables, called fragments too.
Generally, at least one attribute (mainly primary key attributes) needs to be assigned to
several fragments, in order to reconstruct the original relation. As a basic illustration,
assuming that our employee relation (as shown in Figure 2.2) has three attributes
namely id, name and avatar (which stores an image in a binary form), then this relation
could be partitioned as two different fragments:

P1 : (id, name)
P2 : (id, avatar)

Figure 2.2: Example of vertical partitioning
2

Choosing the right vertical partitioning for a workload can improve query perfor-
mance and also have positive impact on other database physical design decisions like
indexing[JPPD]. Hence it is very important to select the optimal partitions for a relation.

2.2 Vertical partitioning algorithms

As discussed in (Section 2.1) one way to reduce I/O related costs and make queries
run faster is to apply an efficient vertical partitioning. The problem of finding, with
an algorithmic approach, such partitioning is not new and during the last few decades
there have been numerous algorithms and solutions offered, (e.g. [NCWD84b, HN79b,
CY90, JD12, PA04b]).

Mainly, finding the optimal vertical partitions of a given relation is an NP-complete
problem, according to Agrawal et al.[ANY04a], which is unfeasible to solve with the

2https://blog.marksylee.com/2017/01/28/structures-n-architectures-for-optimizing-database-en/

https://blog.marksylee.com/2017/01/28/structures-n-architectures-for-optimizing-database-en/
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optimal solution in a sub-exponential time, therefore is difficult to manage in case of
real scenarios, without heuristics to reduce the search space[GCNG16, Ape88].

Therefore to find the best possible solution there have been algorithms proposed using
different heuristics. One of the main problem here is that these algorithms mainly
are not universal solutions, and the selection of the proper algorithm must be done
in consideration of different characteristics of the database like the database/query
processing paradigm, the hardware used, the workload specifications, among others.

The proposed vertical partitioning algorithms in the literature could be classified from
different dimensions based the ideas behind them. Jindal et al. [JPPD] offered a
three-dimensional classification:

• Search strategy

• Starting point

• Candidate Pruning

The first of these dimensions, search strategy, refers to how algorithms search the solution
space. There are three main approaches: brute force, top-down and bottom-up:

• Brute force:
This constitutes the naive approach towards solving the optimization problem. Here
the algorithm checks all possible partitions and selects the one which guarantees
the best query performance. The total number of possible different combinations
follows the Bell numbers. A bell number for a number of columns n can be
computed recursively in many ways. For example, we can do so in the following
way:

Bn =
n−1∑
k=0

(n−1
k )Bk (2.2)

Therefore, despite the fact that a brute force approach guarantees that the global
optimal would be found, in practise it is unfeasible to use without any space-
pruning heuristics, due to the huge number of different combinations. In case
of the TPC-H LineItem table, the total number of different vertical partitions is
already 10.5 million. [JPPD]

Other type of algorithms use several heuristics to reduce the solution-space following
mainly two approaches, as we discuss next:

• Top-down:
Algorithms based on this approach start with the full relation and try to break
it into smaller partitions on each iteration. The main assumption here is that
in each step there will be improvements in the cost given for an expected query
workload on the partition currently obtained, based on a predefined cost model.
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Algorithms stop the partitioning process when there are no longer improvements
in subsequent iterations. The earliest vertical partitioning algorithms followed this
approach. [NCWD84a, NCWD84b] The ideas of this approach is also used for
recent algorithms proposed for an online environment [JD12, JQRD11]. Algorithms
with this approach are more suitable when the queries in the workload access
mainly the same attributes, since this might mean that the algorithm starts from
a solution that is close to the optima.

• Bottom-up:
In comparison to the former approach, these type of algorithms start with individual
attributes as partitions, and recursively merge them at each iteration. This process
continues until there are no longer improvements in query costs. The majority
of state-of-the art algorithms follow this approach [HP03, PA04a]. This type of
algorithms are mainly suitable, and have advantages over top down solutions when
the attributes show a highly-fragmented access pattern (i.e., this too might mean
that the algorithm starts from a solution that is close to the optima).

The second dimension to classify the vertical partitioning algorithms, is the starting
point. This refers to whether the algorithm carries out some data pre-processing that
would reduce the attribute set or the workload, that is fed into the partitioning solution.

Considering this dimension, some algorithms (e.g., Navathe [NCWD84a], O2P [JD12],
Brute Force) start from the whole workload (i.e., considering all queries and attributes
at the start). Algorithms like AutoPart [PA04b] and HillClimb [HP03] ) extract subsets
of the attribute space, choosing as a starting point a configuration where the original
attributes are sub-divided into groups using a k-way partitioner, and then letting the
partitioner compute vertical partitioning in each group. All sub-partitions are next
combined for generating the complete solution. Attribute subset solutions decrease the
complexity of the partitioning problem but the generated final solution could remain
stuck in local optimas. The third type of selection takes as starting point a subset of
the query space (or workload). This approach is relatively recent, and is based on query
similarities inside a workload.This approach is used in Trojan [JQRD11].

The third classification dimension is candidate pruning. According to [JQRD11], ac-
cording to [JQRD11] all algorithms except Trojan, do not apply any candidate pruning
technique (save for the iterative computation) and only Trojan used a so-called threshold-
based tuning in order to reduce the search space.

In our experiments we evaluate brute force, next to the Navathe, O2P, AutoPart and
HillClimb algorithms, as baselines to provide an evaluation context for our DRL models.
Given this choice, we consider that it is important to review these algorithms in detail,
highlighting commonalities and differences between them. To conclude this section we
summarize some aspects about these algorithms. In the next section we discuss each of
them (except brute force) in detail.

In Table 2.1 we classify the given algorithms based on the different dimensions discussed.
In the following, Table 2.2, we report further details from the original implementations.
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Namely, we highlight the original hardware cost model adopted, the kind of workload
the algorithm presupposes, and whether the algorithm allows for attribute/column
replication.

Parameters Category Navathe O2P AutoPart HillClimb

Search strategy
Brute Force
Top-down + +
Bottom-up + +

Starting point
Whole workload + +
Attribute subset + +

Query subset

Candidate Pruning
No pruning + + + +

Threshold-based

Table 2.1: Classification of Vertical-partitioning algorithms, adapted from [JPPD],
(Original characteristics of algorithms)

Parameters Values Navathe O2P AutoPart HillClimb

Hardware
HARD DISK + + + +

MAIN MEMORY

Workload
OFFLINE + + +
ONLINE +

Replication
PARTIAL +

FULL
NONE + + +

Table 2.2: Settings for vertical-partitioning algorithms, adapted from [JPPD]

2.2.1 Navathe

One of the earliest top-down algorithm is the approximation-based approach offered by
Navathe et al. [NCWD84a]. In the first step of algorithm this algorithm an attribute
affinity (AA) matrix is constructed. Here the affinity among the attributes is defined as
follows:

For each query k:

uki =

{
1, if query k uses the attribute ai

0, otherwise

With uki - representing the affinity, as stored in a cell of the AA matrix.

In the second phase the generated AA matrix is clustered by permutating rows and
columns, until obtaining a block diagonal matrix. For this purpose authors offered an
algorithm called CLUSTER which employs a bond energy algorithm [72].
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In the third phase, these blocks are recursively clustered, and the resulting partitioning
is finally formulated. In Figure 2.3 some steps of the algorithm are illustrated.

Figure 2.3: Initial attribute affinity matrix (AA); (b) attribute affinity matrix in
semiblock diagonal form; (c) non-overlapping splitting of AA into two blocks L and U
([72]).

Despite, Navathe being one of the first approaches for vertical partitioning with the
top-down scenario, it is still used as part of more advanced algorithms.
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2.2.2 O2P

Recently another top down algorithm was offered by Jindal et.al [JD12], being mainly
designed for an online environment. Authors suggest that the main disadvantages of the
existing vertical partitioning algorithms is that they are mainly offline solutions. So there
are problems when the workload is changing during the time. This is especially important
if there is concept drift (or rapidly changing workloads). In such cases it becomes difficult
for database administrator to adopt the recommendations from partitioning algorithms
appropriately. The offered solution AUTOSTORE works in an online environment,
dynamically monitoring query workloads and dynamically clustering the partitions using
interval-based analysis over the affinity matrix. For analyzing the partitions, the authors
offered an online algorithm O2P which employs a greedy solution. Therefore, despite
the partitions generated by O2P being non-optimal ones, in practise they show decent
and comparable results to other algorithms.

As described, O2P employs Navathe’s algorithm and dynamically updates the affinity
matrix for every incoming query. Dynamic programming is using for keeping the optimal
split lines from previous steps.

This algorithm works by defining a partitioning unit, which corresponds to the smallest
indivisible unit of storage (e.g. attribute groups that are always mentioned together on
all queries). Next it defines an ordering inside each unit (i.e., the order of attributes in
the attribute affinity matrix, to help the block-wise clustering). Based on this order a
split vector S can be proposed, which defines with 0 if a given attribute is placed next
to the former one, or with 1 if there is a split. O2P does one dimensional partitioning,
because it considers only one split line at a time. Finally, partitions are then defined by
split lines, partitioning units and the corresponding orders.

In 1 the pseudocode of O2P is shown. As mentioned, the call to O2P is recursive, taking
as input the previous split vector (S), and information from previously evaluated split
lines in the left and right groups. It also takes as input the best in all previous partitions
(PrevPartions). As mentioned, the algorithm reuses or computes the information
regarding the best split line found in all previous partition, and the minimum cost for
the best split in the two groups along the current split vector (lines 1-6). The algorithm
stops if one split line is invalid (lines 7-8). Next it evaluates the minimum cost obtained
for the three lines (line 10), and chooses the one having the minimum cost, setting the
next parameters such that computation can be reused (lines 11-35).
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Algorithm 1 O2P algorithm- dynamicEnumerate
Input S, left, right, PrevPartitions
Output Enumerate over possible split vectors

1: SplitLine sLeft = BestSplitLine(S,left);
2: Cost minCostLeft = BestSplitLineCost(S,left);
3: SplitLine sPrev = BestSplitLine(S,PrevPartitions);
4: Cost minCostRight = BestSplitLineCost( S,right);
5: SplitLine sPrev = BestSplitLine(S,PrevPartitions);
6: Cost minCostPrev = BestSplitLineCost(S,PrevPartitions);
7: if invalid(sLeft) and invalid(sRight) and invalid(sPrev) then
8: return
9: end if
10: Cost minCost = min(minCostLeft, minCostRight, minCostPrev);
11: if minCost == minCostLeft then
12: SetSplitLine(S, sLeft);
13: if sRight > 0 then
14: AddPartition(right, sRight, minCostRight);
15: end if
16: right = sLeft+1;
17: else if minCost == minCostRight then
18: SetSplitLine(S, sRight);
19: if sLeft > 0 then
20: AddPartition(left, sLeft, minCostLeft);
21: end if
22: left = right;
23: right = sRight+1;
24: else
25: SetSplitLine(S, sPrev);
26: if sRight > 0 then
27: AddPartition(left, sLeft, minCostLeft);
28: end if
29: if sLeft > 0 then
30: AddPartition(right, sRight, minCostRight);
31: end if
32: RemovePartition(sPrev);
33: left = pPrev.start();
34: right = sPrev+1;
35: end if
36: O2P algorithm- dynamicEnumerate(S, left, right, PrevPartitions);
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2.2.3 AutoPart

Papadomanolakis et al. offered a bottom-up algorithm called AutoPart [PA04b].

Authors offered two types of fragments:

1. Atomic - the thinnest possible fragment of a given relation, which are accessed
atomically (i.e there is no query which access the subset of atomic fragment)

2. Composite - union of several atomic fragments

The general outline of algorithm is described in Figure 2.4.

Figure 2.4: Outline of the partitioning algorithm used by AutoPart ([PA04a]).

As a first step the algorithm identifies predicates based on workload, to avoid “false
sharing” between queries. This constitutes categorical partitioning. In the second step
atomic fragments are generated (i.e, those that appear together in all queries), in the
next step composite fragments are generated either by merging atomic fragments or
combining those with composite fragments from the previous step. On each iteration
an estimated cost is calculated and if there are no improvements, then the process of
composite fragment generation finishes.

The pseudocode of the algorithm is shown in Figure 2.5. Here, atomic fragments are
computed initially (line 1); they constitute the initial solution or partial schema, PS.
Next, composite fragments are calculated (line 2), which are formed by combining pairs
of the fragments selected in the previous step with the atomic fragments. These are
fragments that need to have a support in queries that exceed a certain threshold (line 2a),
which means that for fragments to be considered useful they should appear in a number
X of queries. Following this a set of composite fragments can be considered for inclusion
in the partial schema (line 3). First a selected fragment is considered (line 3a), which
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the union of the given composite fragment and the partial schema. There is a pruning
condition that could be given (line 3b), and then the cost is simply computed (line 3c).
Next from the set of fragments studied (lines 3a-3c), the one with the lowest cost is
selected and the algorithm evaluates if there is an improvement on the cost (line 4). If
there is an improvement, the union of this fragment with the current partial schema
(PS) is selected as the new partial schema (line 6) and removed from the composite
fragments (line 8). The process then repeats (lines 3-8) until no solution is found, or
there are no composite fragments left.

Figure 2.5: The AutoPart algorithm ([PA04a]).

2.2.4 HillClimb

Hankins et al. proposed a straight-forward bottom-up partition algorithm which is
simply a HillClimb [HP03] optimization algorithm. The steps of algorithm are as follows:

• Initialize the algorithm with a columnar layout, where each attribute is inside a
different partition.

• In each iteration: Find and merge two of the current partitions which guarantee the
best improvement (across all candidates in the iteration) in terms of a predefined
cost function

• The process stops when the best improvement in the current iteration does not
lead to an overall performance gain with respect to the previous iteration, or when
there are no more columns to merge.
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Here should be noted that on each iteration the overall number of partitions is decreasing
by one.

The pseudocode for HillClimb is presented in 2.

Algorithm 2 Hill Climb

function Hill-Climb(Q, G)

. Q is the set of all queries

. G is the set of all groups

. Compute the cost, table[i], of each group i
for i = 1 to length(G) do

for j = 1 to length(Q) do
table[i] = model(Q[j],G[i])

end for
end for
. Compute the cost for each partition
Cand = {{1}, {2},···,{n}}
R = ∅
do

R = Cand
mincost = candcost
Cand = ∅
for i = 1 to length(R) do

for j = i + 1 to length(R) do
s = {{R1, ... , Ri

⋃
Rj,... }}

Cand = Cand
⋃
s

end for
end for
. Compute lowest cost partition
candcost = mini=1...|Cand|(cost(Candi))
Cand = min=1...|Cand|(Candi)

while candcost <mincost
return R

end function

With this we conclude our detailed explanation of state-of-the-art algorithms for vertical
partitioning. These constitute the baseline, or heuristic-driven approach, to the self-
driving approach we study in this work. In the next sections we introduce the area
of reinforcement learning, and of deep reinforcement learning, as they constitute the
theoretical framework of the solution we study.
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2.3 Reinforcement learning

In this section we briefly discuss reinforcement learning (RL). Since, the topic is very
broad we decide to focus only on the essential concepts relevant to our current research.

We structure this section as follows:

• We start by discussing general reinforcement learning, introducing the basic
terminology (Section 2.3.1).

• Subsequently we discuss Deep Q-learning (DQN) based approaches, since they are
a state-of-the art family of approaches in deep RL algorithms, and we use models
based on these approaches for our study (Section 2.3.2).

2.3.1 RL basics

RL is a class of machine learning solution, where an agent learns the proper behavior
(i.e, how to choose actions, given a state) for solve a given task through trial-and-error,
by interacting with an environment and obtaining rewards. Formally speaking, the
purpose of RL is to solve a Markov Decision Process (MDP), when the decision policy
is unknown. The interaction in the MDP process is shown in Figure 2.6.

Figure 2.6: The Agent-Environment interaction in MDP
[SB98]

Here an agent observes the state of an environment St. Based on this, the agent takes an
action At from the predefined action set A based on a chosen strategy, and applies this
action on the environment, changing the current state to a next one St+1 and gaining in
the process a so-called reward Rt.

Below we describe some basic terminology of RL:

• Environment - The system the agent interacts with. The general mathematical
framework for defining an environment is a MDP. A MDP is a set of finite
environment states S, a set of possible actions A(s) in each state, a real valued
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reward function R(s) and a transition probability P (s′, s|a) from one particular
state to another, given an action. Generally, the main aim of RL is to solve a
MDP when the probabilities of rewards are unknown.

• Episode - A sequence of < s0, a0, r1, s1 >, < s1, a1, r2, s2 >,..., < sn−1, an−1, rn,
sn> tuples (steps) from the start to the end. Episodes end with some terminal
state.

• State - Current position of the agent in the environment. In addition to the state,
Observations are how the state is represented to an agent.

• Reward - The feedback signal given by the environment for reaching a particular
state given an action and a previous state.

• Actions - The set of signals from which an agent is able to select for transitioning
the environment from one state to another.

• Transition model - T (st, at, st+1) = p(st+1|st, at) - The probability of transitioning
between states st and st+1 in case of an action at.

• Policy - The function(strategy) that specifies the action which an agent will choose
in a given state s. One of the core problems of RL is to find the optimal policy
which will maximize the long-term cumulative reward.

• Value - The future reward that an agent expects from following a particular policy.

Some of the challenges in reinforcement learning include the so-called exploration vs.
exploitation dilemma, which expresses during training whether the agent should explore
actions not performed thus far, or exploit the current knowledge. Another challenge is
the credit-assignment problem, wherewith it is difficult to determine for an agent which
action is responsible for a given reward. Different models have been proposed in order
to help the agents overcome these challenges.

2.3.1.1 Basic components of RL models

The agent’s main target is to progressively collect more rewards in comparison to
previous episodes, through a learning process. There are some basic components which
RL models need to have to accomplish this task. Among them, a direct representation
of a policy, a value function or a complete model of the environment couple with a
planning algorithm. Approaches that do not include the last component are called
model-free. Combinations of model-based and model-free RL also exist, but they, the
same as model-based approaches, fall outside the scope of our review.

In next we detail the components from model-free RL, which are relevant to our study
since we adopt these for our solution.
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• Policy - Policies in an agent can be deterministic (Equation 2.3) or stochastic
when an action is selected based on certain probability (Equation 2.4)

π(st) = at, st ⊂ S, at ⊂ A (2.3)

π(at|st) = pi, st ⊂ S, at ⊂ A, 0 ≤ pi < 1 (2.4)

The main target of an RL agent is to learn an optimal policy π∗ which a guarantees
maximal reward for a particular environment while following all steps of this policy.
In practice, an exploration strategy continues till convergence happens on “optimal”
or “sub-optimal” policies.

• Value function - These are used to evaluate the usefulness of the particular
policy π at the state st ⊂ S and following the same policy. The usefulness of a
policy is calculated as a sum of discounted rewards [SB98] (Equation 2.5)

V : V π → R, V π(S) = Eπ{Rt|st = s} = Eπ{
∞∑
i=0

γirt+i+1|st = s} (2.5)

Value functions could be estimated by “trial-and-error” and calculated using
dynamic programming approaches. They also have a recursive nature as described
in the (Equation 2.6) [SB98].

V π(S) = Eπ{Rt|st = s} = Eπ{
∞∑
i=0

γirt+i+1|st = s} = Eπ{rt+1+
∞∑
i=0

γirt+i+2|st = s}

(2.6)

Equation (Equation 2.6) unravels to the Bellman equation of V π.

Value functions usually replace direct policy representations in implemented models,
since value functions can be used to define a policy.

• Quality function - Some RL methods try obtain to find optimal policies empiri-
cally. For that reason they employ so-called Quality function. A quality function
has a similar definition to a value function but they also take an action into
consideration[SB98].

Q : SXA→ R, Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ{
∞∑
i=0

γirt+i+1|st = s, at = a}

(2.7)

In an optimal policy π∗, the V π∗ = argmaxaQ
π(st, at) when taking an optimal

policy [SB98]
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2.3.1.2 Q-learning and SARSA

The idea of temporal-difference learning (TD) [SB98] is based on dynamic programming
(DP) and is related to Monte Carlo methods. In comparison to Monte Carlo methods
where the entire episode needs to finished to able to be able to update the value function,
TD-learning is able to learn value function within each step. In comparison to DP where
the model of the environment’s dynamic is necessary, TD is suitable for uncertain and
unpredictable tasks. There are two possible algorithms offered for TD-learning tasks.

• off-policy Q-learning algorithm offered by Watkins et al [WD92]

• on-policy SARSA algorithm offered by Sutton et al [SB98]

For updating the action-value-function on-policy methods update the value given for the
current action by considering the future actions based on the current policy, whereas off-
policy methods use policies different that the current one for calculating the discounted
reward (i.e., the next action) for a given action-value-function.

Q-learning is an off-policy algorithm because to approximate optimal Q-value function
Q∗ it does not consider the current policy. The update step is described in Equation 2.8.

Q(st, at)← Q(st, at) + α(rt+1 + γmaxaQ(st+1, at+1)−Q(st, at)) (2.8)

Here α is a learning rate (0<α ≤1) that determines how fast the old Q-value will be
updated based on new experiences. γ is a discount factor that is used to balance how
much the value of future states will impact the value of the current state.

It has been proven that Q-learning converges to the optimal provided that the state-
action pairs are represented discretely, and that during exploration all actions are
repeatedly sampled in all states (which, as authors point out [FLHI+18], ensures sufficient
exploration)[WD92].

In comparison to Q-learning, in SARSA the Q-value is updated via the interaction
with the environment and updating policy is depends from on the taken action. The
update step for SARSA is almost the same as for Q-learning except it does not need to
select the action which guarantees the maximum reward by following the current policy
Equation 2.9.

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at)) (2.9)

2.3.1.3 ε-greedy and Boltzmann exploration strategies

There is a well-known exploration vs. exploitation dilemma in RL:
Should the agent exploit already learned knowledge about the environment (following
what is currently known to be the most rewarding policy), or does the agent need
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to explore more unknown states to be able to find a better policy? Obviously, at
the beginning of its training the agent should explore larger amount of states, and
then he could exploit the gathered knowledge till he is confident enough of the results.
The problem here is finding the right trade-off for how to switch between exploration
and exploitation, and this could be hard to achieve in the case of uncertain/dynamic
environments.

There are several methods proposed for managing this challenge:

• ε - greedy strategy: In this series of strategies, given the Q-function Q(s, a) an
agent randomly selects a action based on predefined ε - probability ( 0 ≤ ε < 1
) and selects the best action which maximizes the Q-value for a given state in
(1- ε) cases. In most cases, it is better to select a high ε at the beginning of the
task and decrease it gradually as the training increases (decrease exploration over
exploitation). This is the idea of decaying ε - greedy approaches, where a variety
of functions could be used to decrease ε over time.

• Boltzmann Exploration - One of the drawbacks of the ε-greedy approach is that
it considers one action as the best for a given strategy and considers all others
as equally probable bad actions. One of the major problems here, actions that
would rank as second best are being treated equal to the worst possible actions.
To be able to instead use the knowledge about every Q(st, at) value, a Boltzmann
distribution is used as in the formula (Equation 2.10) for getting the probability
of a given action:

p(at|st, Qt) =
eQ(st,at)/τ∑
b⊂AS

eQ(st,b)/τ
(2.10)

Here increasing the parameter τ leads for exploration, decreasing τ with the
number of episodes make exploration more greedy and the probability of several
promising actions is increased, such that the agent explores more.

2.3.2 Deep RL

Pure value-function methods discussed in Section 2.3 are suitable when the actions are
mainly discrete and we have small state spaces. However these approaches become im-
practical in case of high-dimensional and continuous action spaces and for environments
with huge state spaces, since it will be difficult to create and update such large Q-tables.
Another problem is ineffective feature representation, which could lead to slowing down
the learning process and delayed convergence.

Nowadays, deep Learning (DL) solutions are becoming very popular in different domains
such as computer vision, speech recognition, machine translation, etc. where they are
able to demonstrate nice results[DY+14]. Deep neural network approaches are able to
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learn very complex features from raw input. Deep learning refers to the use of artificial
neural networks for machine learning. Nowadays these models have become mainstream
thanks to developments in specialized kinds of neurons (e.g. convolutional, recurrent,
GANs), optimization algorithms (e.g. Adam, Nesterov) and the standardization in
supporting technologies, including libraries such as Caffe, Keras or Tensorflow-slim.

DL approaches show promising results too when combined with RL, being used for
function approximation (i.e., such that the neural network maps between a state to
the Q-values predicted for the actions). The idea here is that it is overwhelming to
store each state in memory, specially if these states are very similar (in computer games
there could be only one single pixel difference between two sequential frames(states)).
Therefore, instead of getting exact Q-values of a concrete state, we would involve deep
neural networks to approximate Q-values (Equation 2.11). Here the parameters of the
neural network (weights, biases, activation functions, etc., are represented as θ)

Q∗(st, at, θ) ≈ Q∗(st, at) (2.11)

Figure 2.7 provides a taxonomic overview on recent classes of RL algorithms. As can
be seen, the first large division concerns model-free or model-based approaches. As we
have already mentioned, in our work we have decided to focus on model-free scenarios.
From the model-free cases there are value-based methods (such as Q-learning, and it’s
deep variant, DQN) and policy optimization methods (like basic policy gradient, and
some deep variants like PPO).

.

Figure 2.7: Taxonomy of recent RL algorithms3

3Source: https://spinningup.openai.com

https://spinningup.openai.com
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In the further sections we provide a summarized overview of the DRL approach which
we used for our models. In detail we review a subset of methods from the DQN class.

2.3.2.1 Deep Q-Network (DQN)

The deep Q-network (DQN), approach of applying deep reinforcement learning as offered
by Mnih et al. [MKS+13],
[MKS+15] was able to successfully learn how to play various Atari Games.

In the original DQN algorithm, a neural network was added a substitute of Q-tables in
Q-learning, and it as fed first pre-processed images from atari game emulators as an
input. A convolutional neural network (CNN) was employed. In this case the agent had
access only to a game’s score, which it considered as a reward.

After defining the Q-network architecture, taking as input the state (e.g. pre-processed
images) and giving as output the series of Q-value predictions for all possible actions
given the state, we train it by minimizing a loss function (Section 2.3.2.1) Li(θi) which
changes at each iteration i.

Li(θi) = E(st,at,st+1,rt+1)r∼D[(rt+1 + γmax
at+1

Q(st+1, at+1; θi)︸ ︷︷ ︸
target

−Q(st, at; θt)︸ ︷︷ ︸
current

)]2 (2.12)

For function approximation a naive DQN implementation includes some conditions
that could cause the model to not converge (e.g. the high correlation during training
in observations from the same episode). In order to deal with such conditions, DQN
proposed some basic improvements.

DQN employs so-called Experience Replay, a mechanism to avoid correlations between
data samples and provide data set for training purposes. Here D is the Replay memory
and contains tuples from previous experiences (st, at, st+1, rt+1). These tuples are sampled
in a batch for the DQN training. This sample can be uniformly chosen (the default), or
performed with some prioritized sampling.

DQN also incorporate a so-called Fixed-Q target. In the original algorithm (Sec-
tion 2.3.2.1) when we calculate the loss function we calculate difference between TD-
target (Qtarget) and current estimated Q-value ( Qcurrent). The problem here is that we
use the same parameters (weights) to update both TD-Target and Q-Value. Therefore,
there is a big correlation between target and changed weights. It means, at every training
step target values are also changing with along Q-values. It makes convergence slower.

In case of, fixed Q-target we employ two separate networks (θ, θ−). And update of
weights from Q-value network to target network happens at every τ steps. The idea is
that during training the current network is continuously update, while the target network
(used to predict the Q-values for the next step) is not updating while training. Instead,
at seldom intervals the weights of the current network are copied (i.e., synchronized) to
the target network. This allows to “fix” the q-values of the next step during training,
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such that the q-values being updated do not affect those predictions, and the training
converges better. This allows to have more stable learning due to target network stay
fixed for a while. This is also shown in .

The pseudo code of the algorithm explaining how DQN is trained is shown in 3.

Algorithm 3 Deep Q-learning with Experience Replay [MKS+13]

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1, M do
4: Initialize sequence s1 = x1 and preprocessed sequenced φ1 = φ(s1)
5: for episode = 1, T do
6: With probability ε select a random action at
7: otherwise select at = maxaQ

∗(φ(st), a; θ)
8: Execute action at in emulator and observe reward rt and image xt+1

9: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
10: Store transition (φt, at, rt, φt+1) in D
11: Sample random minibatch of transitions (φj, aj, rj, φj+1) from D
12:

Setyj =

{
rj, for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′
; θ), for non-terminal φj+1

13: Perform a gradient descent step on (yj −Q(φj, aj; θ))
2

14: end for
15: end for

2.3.2.2 Basic extensions to DQN

There have been several additional improvements offered as basic extensions to the
original DQN algorithm.

• Double DQN - Hasselt et al. proposed Double DQN [HGS16] to handle overesti-
mation of Q-values. Basically, the max operation uses the same value to select
and evalaute an action. Because of this there is a bias to have overestimations.
Double DQN proposed the use of two estimators such that the errors introduced
are decoupled, reducing the positive bias.

• Prioritized Experience replay (PER) - Proposed by Schaul et al. [SQAS15]
introduces the idea of improving the sampling from the experience replay by
selecting more “important”/“useful” experiences from the replay buffer during
training. In the original experience replay the sampling of the batch happens
uniformly, which makes it hard to select “important” experiences. In the proposed
PER solution we sample a batch by defining the priority for each tuple in the
experience buffer, and then ranking them. Here the algorithm “prefers” experiences
with bigger difference between the Q-value and TD-Target values.
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More advanced extensions to DQN, affecting the neural network design have also been
proposed. We discuss two of them, as they correspond to models we use in our solution.

2.3.2.3 Distributional RL

In their work Bellemare et al. proposed an approach called Distributional RL, which
mainly learns to approximate the complete distribution rather than the approximate
expectation of each Q-value. [BDM17] In RL we use the Bellman equation for expected
value approximation. But in case of a stochastic environment choosing actions based on
an expected value could be a reason for non-optimal solutions.
In disributional RL we directly work with the full distribution of returns. Here we define
a random variable Z(s, a) - starting from the state s, and performing action a for the
current policy. In that case we could define value-function in terms of a Z-function as
shown in Equation 2.13.

Qπ(s, a) = E[Zπ(s, a)] (2.13)

The Bellman equation can then be rewritten as a distributional Bellman, shown in
Equation 2.14.

Zπ(s, a)
D
= R(x, a) + γZπ(x

′
, a
′
) (2.14)

Here x′ ≈p(·|x, a) and a
′ ≈π(·|x′) and Z is a value distribution.

In their approach authors used the Wasserstein Metric to describe the distance between
probability distributions of Z(s, a) and Zπ(x

′
, a
′
). Here value distribution could be

represented in a different form but in the proposed C51 algorithm authors used a cate-
gorical distribution. Authors proposed and proved the convergence of the distributional
Bellman equation.

Building on this previous work Dabney et al. offered an implicit quantile network(IQN)
[DOSM18], trained as a deterministic parametric function to reparameterize samples
from a base distribution to the quantile values of a return distribution. In comparison
to C51 in Implicit quantile case the output is a single sample instead of a reward
distribution per action. Here algorithm takes an input at 2 different stages, at the first
stage IQN takes current state as a vector and transforms it into another vector with a
fixed dimension (i.e., vector V). Then algorithm takes some random scalar value τ in the
range of [0,1] and feeds that value into the function Φ(τ). Here we get a vector H with
the same dimension as V. V and H vectors are then combined (via vector multiplication
or concatenation depending on the forward layers size). The result of the forward-pass
is an |A| dimensional vector which contains action-distributions.

In Figure 2.8 the network architectures of DQN and different variations of distributional
RL algorithms is illustrated.
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Figure 2.8: Network architectures of different Deep RL algorithms, derived from
[DOSM18]

2.3.2.4 Rainbow

In their paper [HMvH+17] Hessel et al. proposed integrating in a single agent several
improvements of DQN (as discussed in Section 2.3.2.2), as well as distributional RL
(Section 2.3.2.3). Authors report the individual gain from each addition, finding that an
approach combining strategies is by large beneficial in the evaluated scenario.

Below we summarize the improvements which have been done in the original paper:

• Replacing 1-step distributional loss with a multi-step variant.

• Combining multi-step distributional loss with Double DQN.

• Adapting prioritized experience replay with KL loss.

• Dueling Network architecture with return distribution

It should be noted that, Rainbow is a pluggable agent so it is possible to add or remove
different combination of these and additional extensions and improvements.

In our work we will evaluate models that use basic DQN, distributional DQN with
prioritized experience replay (a subset of Rainbow), and a model that uses implicit
quantiles, as offered in the Google Dopamine framework.
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2.4 Summary

In this chapter we discussed necessary background knowledge which we believe will be
helpful to understand the next chapters of this thesis.

First we provided the core ideas behind partitioning approaches, and the reason why
DBMS systems need such optimization. We described different vertical partitioning
algorithms, categorized them based on different dimensions, and briefly described a
selection of them.

Following this we discussed state-of-the art RL approaches, which we use for our
experiments and evaluations.

In the next chapter, we describe the design of our solution.
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3. Self-driving vertical partitioning
with deep reinforcement learning

In this chapter we present the design for our solution. Our design is based on combining
two general aspects. First, the use of cost models and experts (i.e., traditional vertical
partitioning algorithms) playing a role in normalizing the rewards. Second, the design
of the environment itself allowing, in combination with the agents, for an RL process.
In this chapter we describe this in detail. We structure our description as follows:

Architecture of our solution:
First, we establish the architecture or our solution, with all constitutent components
(Section 3.1).

GridWorld environment:
Second, we present the GridWorld environment, which encompasses all details pertaining
to action space, action semantics, observation space and reward engineering (Section 3.2).

Summary:
We conclude the chapter by summarizing the contents.

3.1 Architecture of our solution

Our implementation contains two separate parts:

1. To be able to learn and later to compare our proposed RL models with state-
of-the art vertical partitioning algorithms. For this we use adapted versions of
these algorithms proposed by [JPPD] and available as an open-source project1

1https://github.com/palatinuse/database-vertical-partitioning/

https://github.com/palatinuse/database-vertical-partitioning/
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implemented in the Java programming language. Since we use a form of learning
from experts (in our case, we adopt the rewards of the experts to normalize the
rewarding scheme), we implemented REST APIs using the dropwizard framework2

which helped us to interact efficiently with these implementations.

2. The second part comprises the RL framework itself, including our own environment,
which we implement as an OpenAI Gym environment3, such that it can be then
called with state-of-the-art agents provided by the RL framework Google Dopamine
4.

To implement our RL based approaches we selected Dopamine - a framework for easy
prototyping RL algorithms. Dopamine makes it easy for benchmark experimentation,
allows easily integrate our own environment and research ideas to the framework and
provide most state-of-the art proven algorithms out-of the box [CMG+18]. Dopamine in
turn uses Tensorflow and Tensorflow-slim, for managing neural networks.

In Figure 3.1 the basic architecture of our design is shown. Here each blue box represents
individual software components. We adapted our solution to the Dopamine architecture
and added/changed necessary software components, as needed. In the following we
introduce each component.

Tensorboard
 

Logger

logger.py

Checkpointer

checkpointer.py

GridWorld
Environment

Runner

train.py
preprocessing.py
run_experiment.py
iteration_statistics.py

Replay Memory

circular_replay_buffer.py
   prioritized_replay_buffer.py

Agent

dqn_agent.py
   rainbow_agent.py
   implicit_quantile_agent.py

Expert algorithm 
(Rest API) 

dispatch return

Figure 3.1: The architecture of our proposed solution, adapted from the original
Dopamine architecture

2https://www.dropwizard.io/
3https://gym.openai.com/
4https://github.com/google/dopamine

https://www.dropwizard.io/
https://gym.openai.com/
https://github.com/google/dopamine
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1. Runner - organizes the learning process, launching an experiment decomposed
into iterations, in turn composed of test and evaluate phases. The runner acts as a
middleware, initializing the environment, connecting agents with the environment,
and providing agents with the states from environment for inference and learning.
The runner also manages the logging.

2. Agents - A DQN family of models is provided out-of-the box (requiring only
minimal changes to run with new environments) and their hyper parameters are
easily configurable using gin files. We had to adapt some agent behaviors for our
use case (e.g. by introducing action pruning, or by adding novel parameters not
available in Dopamine, like soft-updates).

3. Replay Memory - As described previously, the DQN family of algorithms uses
a replay memory for effective learning. Dopamine provides several advanced
implementations of this. Almost no changes were required to adopt these.

4. GridWorld Environment - Our learning environment, encompassing the ma-
jority of our choices for modeling vertical partitioning as a DRL task. We discuss
it in detail in Section 3.2.

5. Logger - This component is used for saving experiment statistics for further
visualization and plot analysis, using Colab or Tensorboard.

6. Checkpointer - For long running experiments a checkpointer component is
provided that allows to periodically save the experiment states for weight re-use
later on.

7. Experts - We require to compare with experts, as a baseline. Four our work we
propose that the expertise of existing solutions can also be used. We discuss this
in detail in Section 3.2.

3.2 Grid World Environment

Below we describe the main characteristics of our environment. We called our environ-
ment Grid World

Actions - We consider a learning environment with discrete actions. In our implemen-
tation we follow a “bottom-up” approach. At the beginning of each episode we consider
each attribute as separated partitions. At each step we do only one action and merge
two available partitions.

Since our experiments are based on the TPC-H benchmark and the largest relation on
this benchmark (LINEITEM) contains 16 attributes the overall action set contains the
following number of actions: (

16

2

)
= 120
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.

As an example for how we map the actions to a numerical representation we can provide
the following:

• Action 0 = [0, 1] - merging first and second attributes of relation

• ...

• Action 119 = [14, 15] - merging 15th and 16th attributes of relation

State representation - We experimented with several different approaches to represent
the state, deciding at the end to use an approach which we describe next.

Our state is represented as a [23× 16] matrix. This matrix can be interpreted as follows:

• The first row of the state matrix is the vector of attributes sizes (given a pre-
defined ordering), multiplied by the number of rows of the relation of the TPC-H
benchmark; For example for the LINEITEM table with a single row, the first row
in our matrix will be:
[4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 10, 10, 10, 25, 10, 44] If relations contain less than 16 at-
tributes, the rest of this vector can be simply filled with zeros (0s) .

• The next 22 rows of the state matrix are the workload for the specific TPC-H
or randomly generated workload, which contain a maximum of 22 queries.
Each query vector here contains 16 elements filled with 0s or 1s.

– 0 - the query does not touch the attribute at this position

– 1 - query touches the attribute at this position

In our implementation we do not consider the selectivity of queries on an attribute,
since this does not affect our reward function. Future work could consider this
aspect.

Action semantics/Merging strategy - If an agent makes a step and the step does
not lead to an “end of game”, we can “merge” the attributes based on the selected action.
During merging we follow the below steps:

• Attribute row (first row) - Sum the merged attribute values and keep the value
in the lowest column index. In this case the highest column is deleted from the
matrix and all right columns after current highest change decrease their indexes
by one (shifting by one position to the left).

• Workload - The same rule applies as for the attribute row, except instead of
summing we do a logical OR operation between values.
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• The newly created matrix can now be fed to the NN as the next state.

On each next step the state matrix is shrinking by one in column size. The row size
remains the same.

In figure Figure 3.2 one case of our merging strategy has been shown in CUSTOMER
table example. This is not an optimal partition rather for illustration purposes we are
considering the agent to be selecting randomly. For simplicity we skipped row numbers
and trailing 0(zero) attributes.

Reward engineering - Our reward function is based on the HDD Cost model offered by
[JPPD]. We reimplemented it as a Python function and included it in our environment.

We define our rewarding scheme as follows:

The value of a particular current state is defined as (Equation 3.1):

V aluestate =

{
1000

HDDCost
, if HDDCost 6= 0

1000, otherwise
(3.1)

The reward itself is calculated with (Equation 3.2)

Rewardcurrent state =

{
0, if not end of the game

100 ∗ Vcurrent state−V0
∆best

, otherwise
(3.2)

Here V0 - is the value at the beginning of the episode (all the attributes in different
partitions), ∆best = Vbeststate− V0 - where Vbeststate is the value of the state reached when
following all the expert steps (getting this value from expert)

By expressing the final reward in terms of the percentage compared to the expert, we
are able to normalize the rewards obtained, solving the problem of having very different
costs based on table and workload characteristics.

The game reaches a terminal state (game over) when one of the below conditions occur:

• if the number of columns = 1 - only one partition left

• if Vstate < Vstate−1

• if the selected action is not valid (e.g. it refers to a column that does not exist in
the current table)
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TableAttributes/

Random Queries
CUSTKEY NAME ADDRESS NATIONKEY PHONE ACCTBALL MKTSEGMENT COMMENT

Attribute sizes 4 25  40 4 15 4 10 117

 Q1  1  1  0  1  0  0  0  0

 Q2  1  1  1  0  0  0  1  0

a) Original settings of CUSTOMER table with 2 random queries
 

b) Step 1. Agent Choose an action 65 (merge attributes 5 (ACCTBALL) and 6 (MKTSEGMENT)) 
 

TableAttributes/

Random Queries
CUSTKEY NAME ADDRESS NATIONKEY PHONE ACCTBALL, MKTSEGMENT 

(new partition) COMMENT

Attribute sizes 4 25  40 4 15 14 117

 Q1  1  1  0  1  0  0  0

 Q2  1  1  1  0  0  1  0

c) Step 2. Agent Choose an action 15 (merge attributes 1 (NAME) and 2 (ADDRESS))) 
 
 

TableAttributes/

Random Queries
CUSTKEY NAME, ADDRESS 

(new partiton) NATIONKEY PHONE ACCTBALL, MKTSEGMENT  COMMENT

Attribute sizes 4 65 4 15 14 117

 Q1  1  1  1  0  0  0

 Q2  1  1  0  0  1  0

e) Step 4. Agent Choose an action 111 (merge attributes 11 and 13))
This is an invalid action since we don't have attributes 11 and 13 in the CUSTOMER relation 
 
 
 

d) Step 3. Agent Choose an action 32 (merge attributes 2 (ADDRESS) and 6 (MKTSEGMENT))) 
Since Attributes ADDRESS and  MKTSEGMENT are inside complex partitions we choose the smalliest number on each partition for merging
In this case we merge 1 and 5 
 

TableAttributes/

Random Queries
CUSTKEY

NAME, ADDRESS,  
ACCTBALL, MKTSEGMENT  

(new partiton)
NATIONKEY PHONE COMMENT

Attribute sizes 4 79 4 15 117

 Q1  1  1  1  0  0

 Q2  1  1  0  1  0

Figure 3.2: An example of state merging
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Learning from experts - Since we need to measure the goodness of agents behaviour
we need a sequence of steps and a final cost proposed by an expert algorithm for a given
table and fixed or randomly generated workload.

As an expert we chose the HILLCLIMB algorithm offered by [JPPD]. We interacted
with this expert through a REST API call. Our API is a GET method and we pass the
table in the form of attributes size array and workload configuration and returns us the
best cost achieved by HILLCLIMB, and the sequence of piecewise actions (i.e, the items
merged at each iteration of HILLCLIMB) needed to reach this reward. In Figure 3.3 an
example of our REST API response is shown.

Figure 3.3: REST API response example

3.3 Summary

In this chapter we provided an architectural view of our solution. Such view combined
some implementation and general design aspects. Next we presented the Grid World
environment, describing in detail how we mapped the vertical partitioning process to
be deep reinforcement learning solution. In the next chapter we establish our research
questions and provide details about our experimental setup.
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4. Experimental setup

In this chapter we establish our research questions and overview the experimental setup
we used for evaluation.

The chapter is organized as follows:

• Research Questions:
First we provide several research questions that we aim to address in our work
(Section 4.1).

• Hyper-parameters for DQN agents:
We define how the DQN agents are configured in our experiments (Section 4.2).

• Unified settings for proposed algorithms:
We discuss adapted and unified versions of vertical partitioning algorithms discussed
in (Section 2.2), which were required for our evaluation ().

• Measurement Process:
We introduce our basic measurement methodology (Section 4.4).

• Evaluation Environment:
We list relevant characteristics from the execution environment of our tests (Sec-
tion 4.5).

• Benchmarks:
We describe the TPC-H benchmark which has been used for our evaluations
(Section 4.6).

• Summary:
We conclude the whole chapter in (Section 4.7).
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4.1 Research Questions

The aim of this research is to provide early results about the feasibility of using state-of-
the art RL models for self-driving vertical partitioning.

Accordingly, we would like to answer to the following research questions:

1. What is the training cost, for cases with different levels of generality? Is there any
impact with regards to the complexity of the learning instance (i.e., the number
of steps)? What techniques are important to speed-up convergence? To answer
these questions we consider three cases of different specificity/generality:

(a) RL agent is training on a fixed workload and table.

(b) RL agent is training on a set of fixed workload and table pairs.

(c) RL agent is training on different workloads but the same table.

2. Once the model(s) has converged (or partially converged), how does the perfor-
mance on inference (i.e, solving the partitioning task) compare with state-of-the-art
vertical partitioning algorithms? How does this scale with respect to complexity
of the task or number of attributes in the relation?

4.2 Hyper-parameters for DQN agents

In order to describe our experimental setup, we start by describing the relevant parame-
ters of the DQN agents.

Neural Network (NN) design - since we use DQN-based approaches we need to feed
the state by adopting a neural network. We checked several NN architectures that we
could change in the Dopamine framework and we found that the default convolutional
architecture surprisingly worked well for our given task. In (Figure 4.1) the architecture
of the adopted solution is shown.



4.2. Hyper-parameters for DQN agents 43

Figure 4.1: Proposed NN architecture

Dopamine provides a number of tunable hyper-parameters for DQN, Rainbow and
Implicit Quantile agents. In our experiments we keep a majority of parameters in their
default values. In this section we briefly explain the meaning of the offered parameters
by categorizing them into several tables. Understanding this is crucial for our further
tests about the impact of some of them on the learning process.

Table 4.1 provides a brief explanation of general environment and experiment parameters:

Parameter Explanation
tf device GPU or CPU
game name Used environment
training steps Number of training steps within one iteration
evaluation steps Number of evaluation steps within one iteration
max steps per episode Maximum number of steps within episode before end of episode
num iterations Number of iterations for the experiment

Table 4.1: General experiment parameters for all agents

Table 4.2 explains parameters for general reinforcement learning, which are common to
all agents.
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Parameter Explanation
gamma(γ) discount factor(weights for future rewards)

epsilon train
ε value in ε-greedy
approach during training

epsilon decay period
ε needs to decay during the learning process
according to a predefined approach, this parameter controls it

boltzmann Instead of ε-greedy using Boltzmann exploration

prune actions
Heuristics helps for faster convergence,
we remove a-priori invalid actions from
action dictionary before chosing an action

Table 4.2: General RL parameters for all agents

In Table 4.3 we provide explanations for parameters specific to DQN agents.

Parameter Explanation
update period the period of learning
target update period update period for the target network

update horizon
horizon at which updates are performed
(n-step Q-Learning)

min replay history
Min. number of transitions that should be experienced
before training n

replay capacity Max. number of transitions in exp.replay buffer

batch size
randomly sampled elements of the transitions
of size batch size

optimizer
Optimization algorithms used to
minimize objective function of NN

learning rate Learning rate of Gradient descent

Table 4.3: DQN-specific parameters

Implicit quantile and Rainbow agents extend DQN, they also offer additional parameters.
Table 4.4 shows some of these parameters.
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Parameter Explanation
kappa Huber-loss cutoff value

num tau samples
Number of quantile samples
for loss estimation

num tau prime samples
Number of target quantile samples
for loss estimation

num atoms
Number of atoms (51 according
to C51 algorithm)

replay capacity Max. number of transitions in exp.replay buffer

batch size
randomly sampled elements of the transitions
of size batch size

optimizer
Optimization algorithms used for
minimize Objective function of NN

learning rate Learning rate of Gradient descent

Table 4.4: Implicit quantile-specific parameters

Implicit quantile uses the Adam Optimizer instead of RMSProp, which is used by DQN.

4.3 Unified settings for proposed algorithms

As discussed in (Section 2.2) each of proposed algorithms (Navathe, O2P, AutoPart,
HillClimb) has been used for a specific scenario, based on different characteristics of
database system, hardware etc. This makes it slightly odd to compare algorithms
with their original settings in one common benchmark, therefore proposed algorithms
has been adapted for the same configuration. These common configurations makes it
possible to compare the algorithms on a fair ground. Below the common configuration
are described:

1. Data granularity - We use meta-data of TPC-H tables and workloads.

2. Hardware - All selected algorithms are optimized for Hard disk optimization.
Therefore the cost models we use follow disk-based storage models.

3. Workload - We are using a fixed set of queries (offline workload) and only scan and
project queries of TPC-H workload (22 queries in total). We also are considering
a random workload in RQ(1.(c)) (the maximum number of queries limited to 22 in
this case). In the original settings scale factor has been assumed as 10. We don’t
consider any specific DBMS in our experiments.

4. Replication - We don’t consider data replication since only AutoPart algorithm
supports it, but we want to keep the same characteristics for all algorithms.
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4.4 Measurement Process

In our evaluation we focus on convergence time and inference time of our agents as
well as time need to be able (for the traditional algorithms) to formulate the partitions.
Since our implementation contains both Java and Python parts we use:

• System.nanoTime() - Java system timer provide sufficient precision.

• from timeit import default timer as timer - measure execution time for Python

To guarantee more reliable results we replay each experiments several times, and disclose
the number of repetitions in each case.

4.5 Experiment Environment

Our experiments were executed on a multi-core machine running on Ubuntu 16.04
system. Detailed parameters of the system as well as used software versions are given
below:

• Intel R© CoreTM i7-6700HQ CPU @ 2.60GHz 8 (8 cores in total

• RAM - 15.5 GiB of memory

• GPU - GeForce GTX 960M/PCIe/SSE2

• Java version: Java SDK 8u111-linux-x64

• Python version:Python3.5

• Dopamine framework: Dopamine 1.0.5

• Tensorflow: Tensorflow-GPU 1.12.0

• Numpy 1.15.4

• Gym 0.10.9
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4.6 Benchmark

We evaluate our RL models using the TPC-H Benchmark. The schema of this benchmark
is shown in Figure 4.2.

Figure 4.2: TPC-H schema
1

The TPC-H database contains eight tables and 22 ad-hoc queries to simulate some
decision support queries occurring together with operational transactions. TPC-H’s
schema represents a simple data warehouse for holding data about customer, sales,
and part suppliers. TPC-H suggests several rules regarding partitioning strategies.
LINEITEM and ORDERS contain about 80% of TPC-H data. TPC-H allows different
scaling factors like (1, 10, 30, 100 etc.). As we mentioned earlier we use 10 as a scale
factor in our experiments.

1http://www.tpc.org/tpc documents current versions/pdf/tpc-h v2.17.3.pdf

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf
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4.7 Summary

In this chapter we introduce our research questions. Next we describe parameters, unified
settings for vertical partititioning algorithms, the measurement process, benchmarks we
used and finally parameters of the hardware that we use for our evaluations.



5. Evaluation and Results

In this chapter we discuss the evaluation and results of our experiments. This chapter
contains two parts:

• In (Section 5.1) we discuss problems related to training costs, convergence results
and the impact of task complexity for the three cases of generality discussed in
RQ 1.

• In (Section 5.2) we compare the performance of our learning models in terms of
solving partitioning tasks with state-of-the-art vertical partition algorithms.

5.1 Training of models

In this evaluation section we focus on our first research question. We test different factors
which might have potential influence for our models convergence and performance. As
discussed in Chapter 4 we use the Dopamine framework and use models offered by
Dopamine.
In our evaluations we used three DRL agents:

• Deep Q-Network (DQN)

• Rainbow

• Implicit Quantile

Rainbow and Implicit Quantile agents extend the DQN agent but also add additional
hyper-parameters for tuning. Since, the network architecture used inside these modelsare
mainly based on convolutional architecture offered by Dopamine therefore we keep all
parameters of network as it is.
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5.1.1 Complexity of learning instance

Since we use the TPC-H workload and HillClimb algorithm as an expert for our
experiments we need to know the sequence of actions which need for HillClimb to get
optimal partitions for each individual table of TPC-H with its exact workload and scale
factor 10 (SF=10).

In table (Table 5.1) we summarized those actions:

TPC-H table Actions
PART [0]

SUPPLIER [2, 42, 0]
PARTSUPP [0, 0]
CUSTOMER [31, 55, 30, 2, 0]

ORDERS [0]
LINEITEM [65, 105, 76, 0]
NATION [0, 0, 0]
REGION [0, 0]

Table 5.1: Actions(steps) needs to get optimal partitions for HillClimb expert

Is it noticeable that we need more actions to get optimal partitions for LINEITEM,
CUSTOMER and SUPPLIER. Instead we don’t need any actions for PART and ORDERS
to get partitions since initial partitions for these tables are already optimal ones according
to HillClimb’s cost model.

5.1.2 Convergence in case of fixed workload and tables

In this tests we train first on TPC-H tables individually, with their own workloads. Since
this is a relatively simple case we expect that all 8 tables converge to the maximum
possible reward in very early iterations. Therefore, we limited the number of iterations
to 150.

The results of convergence for all three models is shown in Figure 5.1 and Figure 5.2.
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(a): Customer (b): LineItem

(c): Nation (d): Orders

Figure 5.1: Single table, Blue line - DQN agent, Red line - Rainbow agent, Green line -
Implicit quantile agent
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(a): Part (b): PartSupp

(c): Region (d): Supplier

Figure 5.2: Single table learning

It is noticeable that after 150 iterations all models have converged. For the tables
Orders and Part convergence happens immediately for all three agents since there is
no action needed for convergence for them. For table Customer convergence happens
around iteration 100 but some fluctuations continues for the DQN agent. For Lineitem
convergence happens around iteration 50 for all agents, and Implicit quantile agents gain
100% of possible reward, whereas DQN and Rainbow agents fluctuate around 90-100%
by the 150th iteration. For other tables convergence happens very fast within the first
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10 iterations, since the these tables require at maximum three steps to gain optimal
partitions.

This first case shows that agents are able to learn simple cases (fixed table, fixed
workload) very fast.

5.1.3 Convergence in case of fixed workload and table pairs

Since our agents were successfully able to learn and converge in case of fixed table-fixed
workloads, we decided to add additional complexity to the learning process. Here we
mixed up all eight tables and the corresponding eight workloads, training and evaluating
on a random selection of them. Here we test several combinations of hyper-parameters,
which we describe as follows:

• All parameters are the same, except update horizon (UH) is different: We test
UH (UH=1, UH=3 and UH=5) just to choose the best option for our further
experiments

• Prune actions versus non prune actions

• Soft-update versus hard-update: This refers to how the synchronization between
current and target network occurs. In a soft update the synchronization occurs
on each step, but instead of weights being totally copied within one network and
another, only a small percentage (tau) of the weights gets updated.

• ε-greedy versus Boltzmann
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(a): Update horizon (UH=1) (b): Update horizon (UH=3)

(c): Update horizon (UH=5)

Figure 5.3: Update horizon tuning

It is noticeable that in all three cases all three models converge relatively fast. In case
of (UH=1) and (UH=5) fluctuations continue even after 300 iterations. Therefore we
chose the most stable UH=3 for the later experiments.

In our further experiments we used advantages of action pruning heuristic. It helps
eliminate a-priory invalid actions beforehand and accelerates the learning process. In
specific, with this approach we filter out invalid actions from the Q-value predictions
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provided from the neural network, before using such predicitions to select the next
action. By doing so we are able to prevent an agent to avoid stepping on an action that
will be invalid, resulting in game over.

In (Figure 5.4) we compared agents with pruning and non pruning actions.
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(a): Non-pruning actions

(b): Pruning actions

Figure 5.4

As we can see, in case of action pruning convergence happens around the step 200 for all
learning agents, but in case of non-pruning convergence for all agents happens around
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400. Therefore, for the next experiments we keep the action pruning heuristic for faster
learning.

The next set of experiments were dedicated to comparing hard versus soft update of
weights from the NN. In the case of hard-updates we follow the fixed-Q-target strategy
where we move weights of learning value network to target value network after certain
amount of time described via the hyper parameter target update period.

In case of soft-update we follow the same strategy but also change targets weight very
slightly gradually on every step.

In Figure 5.5 we compared agents with hard and soft updates.
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(a): Hard-update

(b): Soft update

Figure 5.5: Hard and soft updates, UH=3, with pruning actions

In our experiments we found that there is no dramatic improvements in terms of
convergence between soft-update and hard-updates but in case of soft-update the
average rewards increase more gradually and fluctuations are lower. Therefore we
consider soft-updates for our later experiments, but we did not so when testing only
running times, since it could introduce runtime overheads.

Next we test the effect of a Bolztmann exploration strategy to the learning.
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(a): Bolztmann approach

(b): ε-greedy approach

Figure 5.6: Bolztmann and ε-greedy strategies (Soft update, UH=3, with pruning
actions)

Surprisingly we find that the ε-greedy approach makes the convergence more stable
after 200 iterations. Therefore for our next experiments we use it instead of Boltzmann
exploration.

In (Figure 5.7) the average time needed for training has been shown for our three agents
in case of GPU and CPU usages. We run each experiment five times and collect the
average result for each case.
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Figure 5.7: Average training time for agents

It is noticeable that for the DQN agent there is no big impact brought forward by the
use of a GPU in our learning models, whereas for Rainbow and Implicit Quantile agents
GPU made the learning process about two and three times faster, respectively.

5.1.4 Case of fixed table and random workload

We consider this third case as the most challenging one, since our agent needs to deal
with much more randomness. As our experiment we select the CUSTOMER table
and on each episode we randomly generated a new workload matrix and fed it to the
agent. The only limitation here is that the workload could contain maximum 22 queries.
Theoretically, in this case the number of possible workloads is 2352. Since from previous
experiments we found that the implicit quantile agent works better in comparison to
DQN and Rainbow, we use only this agent for training. Also, from previous experiments
we kept the below settings of the agent.

• We use UH=3

• We use prune actions

• We use soft-update

• We use ε-greedy
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Unfortunately, in this case our agent is not able to converge and oscillated around
78-85% after 72 hours of training (we stop it at 4000 iterations).

In Figure 5.8 and Figure 5.9 the evaluation and training results of the agent are shown.

According to our observation, the reason for the slow convergence could be possibly the
long-sequence of actions (in some cases 7) as seen in some cases for the expert algorithm.
An agent could learn up to 5 steps relatively easy, but faces a problem to learn more
complex patterns. Another reason could be the very strict rules we defined for reward
functions, with delayed rewards.

Figure 5.8: Evaluation plot for random workflow case, with trendline
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Figure 5.9: Training plot for random workload case

Figure 5.10: Number of episodes per iteration for random workload case
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It is noteworthy that in some iterations the reward value exceed 100%. The reason of
this could be that our agent found a solution better than HillClimb, hence surpassing
the Vbest case. In that case, according to our reward calculation it will exceed 100% but
this happen quite rarely.

5.2 Algorithms comparison

In this section we compare our already trained agents with state-of the art algorithms,
as discussed in (Section 2.2).

5.2.1 Generated partitions

We start with the partitions generated by our RL agents and by state-of-the-art algo-
rithms. Here we consider the own workload for each given table, while evaluating on
agents trained on the 8 tables each with their workload.

In Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14 we show, side-by-side, the
results.
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Figure 5.11: Customer and Lineitem tables with corresponding costs for each algorithm
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Figure 5.12: Supplier and Region tables with corresponding costs for each algorithm
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Figure 5.13: Part and PartSupp tables with corresponding costs for each algorithm
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Figure 5.14: Nation and Orders tables with corresponding costs for each algorithm

Here individual partitions are coloured with white. The columns inside the same
partitions have the same color.

Here Optimal means the Brute-Force algorithm offered and implemented by [JPPD].
Theoretically, Optimal should return the best partition in terms of partitions and cost.

It is noticeable that “Top-down” algorithms (Navathe and O2P) have the highest cost in
all cases except for small tables (Region and Nation), and are often not converging to
the optimal. As expected, since our agents converged based on HillClimb expert in the
cases (1.a, 1.b) then the partitions and the cost are all the same as in HillClimb.

5.2.2 Inference times

For this experiment we made 1000 repetitions and take average time for running the
algorithms vs. inference. This was true for all cases except optimal ver the lineitem and
customer table, where we only did 5 and 100 repetitions, respectively, due to the high
latency of the operation.

Our observations show that for most cases traditional algorithms still perform very fast
in comparison to our implemented RL agents. One reason for it could be that we are not
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using an implementation of the neural network that is optimized for inference. Another
aspect is that state-keeping and transitioning for each step adds overheads.

We also found that as models becomes more complex inference times do not increase,
but the time taken for traditional algorithms does.

Figure 5.15: Inference times for LineItem and Customer tables (seconds)
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Figure 5.16: Inference times for the remaining 6 tables (seconds)

In (Section B.3) we put the complete inference time table. There we see that a high
number of attributes (i.e. the lineitem table) DRL solutions are able to outperform
Navathe, O2P and AutoPart in terms of optimization time.
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5.3 Summary

In this chapter we discuss the evaluation and results of our experiments. First we checked
the possibility of our agents to learn in three cases with different hyper-parameters. We
observe that in the first two cases agents are able to converge relatively easy. But in the
most complex case we evaluated, we did not find a 100% convergence. In spite of this
result we are able to find some cases where our solution outperforms, during training,
HillClimb.

In the second part of chapter we compared partitions and the cost need to achieve these
partitions. We found that our “top-down” algorithms result in less efficient solutions
in comparison to “bottom-up” ones, in most cases. We also observe that partitions
generated by our learning agents are exactly the same as for the expert HillClimb
algorithm, matching the optima. This proves that our agents correctly converge and at
simple cases are able to mimic the behavior of an expert.

We tested inference times for each table and its default workload. Results show that
improvements in the implementation of the inference procedure will be required (including
improvements for state-transitions) to make DRL-based solutions also competitive in
terms of inference time.
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In this chapter we give an overview on state-of-the-art works of applying RL approaches
to different database optimization problems. Generally,reviewed papers are very recent,
mostly published in 2018, since research on the use of RL and especially DRL methods
for optimizations of database operations seems to be only started.
(Table 6.1) presents an overview of the works we found regarding this topic. Below, we
discuss some of these works in more detail.s

Area of Application Task Existing Work

Storage Engine
Index Selection [BLC+15, SSD18]
Data Partitioning [DPP+18]

Query Engine

Join-order Enumeration [MP18]
Operator-variant Selection [KBCG18]
Query-plan Optimization [OBGK18]
Adaptive Query Processing [TSJ08]

Table 6.1: Categorization of work using RL for database management

• Index selection - Two works from different research groups propose applying
RL to aid in the automatic index selection task. Basu et al. offered a solution
called COREIL for index selection, without previous knowledge about the cost
model[BLC+15]. The cost model is learned by way of a more general RL formula-
tion. In their pioneering work authors focus on indexes, but they provide a design
that is sufficiently generic to be applied to other physical design tasks.

Building Blocks: In their proposal, one logical database schema R could be
described as a set of physical database configurations S, where two configurations
s and s’ have only a difference in terms of indexes, views, replications and other
parameters. Despite these differences the result of queries and updates are logically
the same for s and s’. The task of their work is the determination of the cost of
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changing from one physical configuration to another, alongside the benefits of the
action. As a workload set Q they considered a stack of queries and updates. The
cost of execution of query q on the configuration s is denoted as cost(s,q). They
modeled query q as a random variable which only becomes observable at the time
t. The environment for training the model is initialized with a randomly chosen
initial configuration, s0 . Authors describe the transition process as a four step
algorithm: Transitions from one state to another are deterministic. Penalties and
rewards, however, are considered stochastic and uncertain.

Based on the formulation described above, the RL problem is framed as that of
finding the sequence of configurations that minimizes the sum of per-stage costs.
To find an optimal policy, authors adopted a policy iteration approach.

Evaluation: Authors implemented a prototype and compare the results with
the WFIT algorithm, which they identify as state-of-the-art for automatic index
selection. As a dataset they used the TPC-C specification with scale factor 2,
with transactions consisting of 5 queries (mixing updates and queries) from an
OLTP-bench generated workload. Authors evaluate the process from 0 to 3000
transactions. As database authors used IBM DB2.

Results shows that despite COREIL converges slower than WFIT, it can achieve
less processing time after convergence (at around 2000 transactions) with only
a small amount of peaks (i.e. cases where it does not achieve better runtime
per transaction than WFIT). After convergence COREIL does not induce higher
costs (to create indexes) than does WFIT. However the runtime for making an
inference exceeds WFIT by at least an order of magnitude. However, COREIL is
more effective than WFIT because it creates shorter-compound-attribute indexes.
Authors conclude that despite COREIL uses a non existent cost-model beforehand,
learning it iteratively, its performance is comparable with WFIT. Finally, it should
also be noted that the slow convergence of COREIL is feasibly improvable by
starting with cost approximations that are close to the real case.

More recently, Sharma et al. offered the concept of NoDBA [SSD18] which also
seeks to automate physical design for indexing, based on Deep Reinforcement
learning approaches.

Building Blocks: They assume a database schema S which contains n columns,
and the maximum number of indexes is k (k<n). The workload has almost the
same meaning as proposed in Basu et al., except for taking more queries into
consideration (i.e., a set of n queries, each described by the usage of certain columns,
and the selectivity of their predicates on those columns). As input parameters
of Neural networks they proposed the workload and the current configuration
of indexes separately: Iworkload and Iindexes accordingly. Iworkload is a matrix
of n*m where n is the number of queries, and m is number of columns in the
database schema. As an element of the matrix they propose the selectivity function
Sel(Qi;Cj), whose arguments are: the i-th query and the j-th column. Selectivities
are computed for every query once per input. Iindexes is a bitlist of size m and
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shows on which columns indexes exist for a given configuration. They limited the
number of actions by considering only single actions using episodic RL. On each
episode initially there is no index, but on final configurations there is a maximum
number of actions (k), and a number of indexes. This process continues iteratively.
For each configuration they propose their own reward function, but the reward
could also be an estimate using the cost function like EXPLAIN, for a concrete
DBMSs. After several trial and error tests, they select these hyperarameters: k
= 3, number of hidden layers = 4, number of neurons for each hidden layer = 8,
activation function = RELU, output layer = SOFTMAX, learning algorithm =
CEM. For the evaluation they categorize random workloads as training and define
some simple test workloads. The test workloads are divided into three groups
and the query complexities is increased for each group, according to the columns
participating in the queries.

Evaluation: Their evaluation used the Postgres database with the TPC-H dataset.
Authors compared their solution with that of the edge cases ( NoIndex and
IndexedAll ). Results show that the runtime of NoDBA is always better for W1
and W2 with improvements of one order of magnitude, and is almost similar with
IndexedAll in the W3 workload.

• Join-order optimization: Marcus et al. offered a concept called ReJOIN [MP18],
which is based in deep reinforcement learning and seeks to help decision making for
finding optimal join orders. This is important since different join orders are possible
for a query, and they lead to different costs. For this problem the traditional
approach consists on evaluating the cost of different, by making assumptions on
the selectivity of join predicates (based on statistics) for all pairs of joins. This is
called the Seeliger-style join order evaluation.

In ReJOIN this problem is tackled differently: By giving SQL queries as input to
ReJOIN, the RL agent should be able to return the cheapest ordering for execution,
based on a pre-explored search space.

Building Blocks: Fig. Figure 6.1 shows the ReJOIN framework. In their approach,
a join tree was considered as a binary tree where each node represents one relation.
This constitutes the state of the problem. Each query which is sent to ReJOIN and
also to the benchmarking optimizer is considered as a complete episode. In each
step of the episode ReJOIN selects one pair of tables to join, receives a reward,
and moves to a state where the subtree is without the chosen pair.

ReJOIN iteratively learns through several episodes. By state authors consider the
possible subtrees of the input join tree. Actions in ReJOIN are limited to the
merging of two subtrees. An episode ends when all relations have become a part
of the binary join tree.
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Figure 6.1: The ReJOIN framework [MP18]

The RL model implemented in ReJoin was Proximal Policy Optimization algorithm
with a deep reinforcement learning technique; the number of hidden layers are two,
each with 128 neurons with a rectified linear unit activation function (ReLU).

Evaluation: The evaluation was done on the so called Join Order Benchmark
(JOB) over the IMDB dataset. Authors report that the training converges at
around of 10k episodes with each episode consisting of a randomly chosen query
from the same test dataset. The Evaluation contains three metrics: Cost of join
orderings, Latency of the generated plans and optimization time. Results show that
ReJOIN outperforms PostgreSQL’s optimizer in terms of the cost of join orderings
and generates better query plans for all queries over PostgreSQL. In average,
query plan costs generated by ReJOIN were 20% cheaper than in PostgreSQL. In
comparison to PostgreSQL, the optimization time of ReJOIN is better starting
from 8 relations onwards. The main problems with ReJOIN are policy update
overhead and latency optimization which will be investigated in future work.

• Query-plan optimization

Ortiz et al. proposed a deep-reinforcement approach for query optimization
[OBGK18]. Authors offer a DRL method for learning the properties of subquery
states (such as cardinality estimates, and others) where queries have been built
incrementally. The main challenge is the representation of the state transition
function, as explained by authors.
Authors propose that the main problem of using DRL for database-related issues is
the representation of queries and models. The problem is: the complexity of model
could make solutions impractical since it will require too many training examples.
Authors develop an incremental model which generates a short representation of
each the intermediate results for each subquery. The model predicts the properties
of subquery by subquery itself and one database operation considering as an action
in terms of RL. As the second contribution authors use this representation via
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Reinforcement learning to improve query plan enumeration.

Building Blocks: Initially the model has a Query and the state of the database as
input and it incrementally executes query plans via series of state transitions. Here
are several assumptions considered by authors: Initial state t - entire database,
action is some query operator and selecting using RL, t+ 1 the next state. Each
state except initial represents one subquery result. NNst - state transition function
which is recursive and takes as input subquery and action at time t, and produce
subquery for time step t+1. Learning process of State Transition Function shown
on Fig. Figure 6.2.

Figure 6.2: State representation. RL schema[OBGK18]

Here the model takes as input pairs (ht, at) where ht - is vector representation of
a subquery, and at - is a relational operation on ht. ht is a latent representation
that model learns itself. NNobserved function is using for mapping observed values
to subquery representation. For learning initial state authors offer NNinit function
which takes some properties of database and randomly one database operator as
an action. Authors combine all these models and train them together.
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Evaluation: For evaluation authors choose the IMDB database since this database
is more realistic and there are definitely correlation and skew between columns.
As an initial experiment authors initialized x0 with properties from the IMDB
dataset. As an initial action a0 authors used conjunctive selection operator.
Authors generate and used 15k queries for training the model and 5k for testing
purposes. The solution contains 50 hidden nodes for one hidden layer. Authors
used Stochastic gradient-descent based algorithm for optimization, and a learning
rate of 0.01. Authors compared the cardinality estimation with the value from
SQL Server. Results show that in case of 3 columns (m=3) there are heavy errors
in short epochs (less than 3) but their approach starts out-performing SQL server’s
estimation after 6th epochs only. There is an observation that in case of increasing
the number of columns convergence will happen slowly. But even in that case it is
shown to outperform SQL Server on the 9th epoch.

With this we conclude our review of related work in applying deep reinforcement learning
to database tasks.
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In this chapter, we summarize results of this thesis and give directions for further
research.

7.1 Conclusion

In this work we introduced an early approach for using state-of-the art DRL methods for
the database vertical partitioning task. As a benchmark we used the TPC-H workbench.
Our main contributions are:

1. Adaptation and unification of four traditional learning algorithms of vertical
partitioning, REST interface between learning RL models and these algorithms

2. Implementation and design of our own RL environment

3. Design of suitable reward function, proper action representation

4. Adaptation and integration of three existing RL agents (DQN, Rainbow, Implicit
quantile) from Dopamine framework for the given task.

5. Test combination of different hyper-parameters during the training process, and
evaluation of the inference process.

6. Validation of the feasibility of the current approach, though questions remain about
two core issues: making the inference process more competitive, and scaling-up to
training over a larger amount of workloads.

7. Discussed evaluation results

8. Brief discussion of recent works applying RL methods for database optimization
problems.
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We proposed two research questions. In the first we tested how learning models converge
considering three different case scenarios. According to our evaluation for the case 1.a
(single table single workload) the iterations needed for convergence strictly depend from
the number of steps needing to get final partition. We found that Implicit Quantile
agent shows better results in terms of convergence. In case 1.b (mixed pair of tables and
workloads) we tested several hyper-parameters. We only found reasonable improvements
in terms of convergence while we use the action pruning heuristic. For the other
hyper-parameters convergence happens relatively similar despite slightly better results
noticeable in case of update horizon = 3, ε-greedy, and soft-update combinations. Here
again, Implicit Quantile agent outperforms DQN and Rainbow agents.

In the most complex case 1.c (single table, random workload) we tested only one case
(CUSTOMER table with random workloads) using Implicit quantile agent since this case
is much harder in comparison to previous two cases and we choose the best combinations
of hyper-parameters from previous cases. Unfortunately, we did not reach absolute
convergence in this case and this case needs additional investigation.

Our second research question was dedicated to inference. We found that in most cases
the solutions of algorithms following a “Top-down” approach were less efficient than those
of algorithms following a “Bottom-up” approach. This could be partly caused by the
workload itself, which could favor columnar approaches, making bottom up approaches
start from a better position. Since, our learning agents follows HillClimb algorithm as
an expert, the cost is the same as in HillClimb. Also, generated partitions were shown
to be the same as HillClimb, and the same as the optimal.

7.1.1 Threats to validity

• Non-machine-learning algorithms

These algorithms are available as an open-source project [JPPD] therefore their
implementation could contain some minor bugs. During our implementation we
fixed several of them (i.e., mostly in the implementation of optimal) but there are
always possibility that we miss some bugs.

• Simplification in non-machine-learning algorithms

In our experiments we considered algorithms with unified settings. Since we do
not differentiate between projection and selection queries our result partitions
could be different in case of these query types will be considered. This is also
true regarding data replication as well as data granularity. We use meta-data of
TPC-H workbench, but in real DBMS we need to consider effect of File system,
database blocks and other characteristics of real database systems.

• Heuristics regarding pruning actions

For the fast convergence, we made a heuristic of pruning actions. Despite without
pruning of actions our models also able to converge but it took 2 times more
iterations. We are not able to prove if it is correct to use this pruning technique
or this could considering as a bias.
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7.2 Future work

In this thesis we show feasibility of applying RL based methods for Database vertical
partitioning optimization task. But we need to admit that we do a lot of unifications,
simplifications and at the current stage the results of our research is not practical.
Therefore, we need to extend this research in the several directions:

• Dedicated study for generalization

As shown, training over a stream of randomly generated cases is a big challenge
for our agents. As future work, this needs to be studied with care, assessing the
precise limits of the current DRL models with regards to their ability to learn for
general cases, and how this aspect could be enhanced by different techniques.

• Performance improvements to inference process

In our study we report inference times that are competitive with the traditional
algorithms, but only manage to outperform some of them for large tables. Further
optimization to the inference process (which apart from inference encompasses
state transitions and initialization) is highly relevant to create a more competitive
solution.

• Better reward engineering

In our implementation we need an “expert” algorithm’s best value and action
sequences for calculation reward on each step. This means that we tightly depend
on expert algorithm. As a future we could consider to avoid this “expert” help,
perhaps we could chose a static configuration as a baseline for normalization.

• Other RL approaches

In our research we employed value-based DRL algorithms offered by Dopamine. But
probably, for the given task policy-based approaches are more suitable. Therefore
for a future we could employ agents based on Policy gradient methods (DPPO,
TRPO etc.). Similarly, DRL algorithms for large discrete action spaces would be
worthwhile to study.

• Deep learning and better feature representation

In our work we tightly rely on the NN architecture offered by Dopamine framework.
Since offered convolutional NN works better for the image input, research could be
continue in the direction of choosing more suitable network structures like recurrent
and recursive networks (RNN) for a given problem. Also correctly selected features
and hyper-parameters could make the model more stable and universal.

• Integration with real world DBMS system

RL introduces new possibilities for DBMSs to expose their design and internals
to learning models. Action engineering is required to decide on the granularity,
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the learning goal, and the way in which RL can be leveraged for DBMS design.
This is a specially pertinent research area for self-driving database designs. More
specialized open questions, pertaining to each optimization problem could be
considered.



A. Structural views of using agents,
derived from Tensorboard

Here we place schematic overviews of the used RL agents, which we derived from
Tensorboard.
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B. Hyper-parameters used for each
agent

In this section we provide hyper-parameters used for each agent during learning. In
Dopamine these parameters are configurable and storing in .gin template files. Majority
of used parameters provided by Dopamine and used as default.

B.1 DQN agent parameters

# Hyperparameters follow Dabney et al. (2018), but we modify as necessary to

# match those used in Rainbow (Hessel et al., 2018), to ensure apples-to-

apples

# comparison.

import gin.tf.external_configurables

DQNAgent.gamma = 0.99

DQNAgent.min_replay_history = 2000 # agent steps

DQNAgent.update_period = 4

DQNAgent.target_update_period = 1 # agent steps, was 400

DQNAgent.epsilon_train = 0.01

DQNAgent.epsilon_eval = 0.0

DQNAgent.epsilon_decay_period = 1000000 # agent steps

DQNAgent.tf_device = ’/gpu:0’ # use ’/gpu:*’ for non-GPU version

DQNAgent.optimizer = @tf.train.RMSPropOptimizer()

DQNAgent.learning_from_demo = False

tf.train.RMSPropOptimizer.learning_rate = 0.0000625

tf.train.RMSPropOptimizer.decay = 0.0

tf.train.RMSPropOptimizer.momentum = 0.0

tf.train.RMSPropOptimizer.epsilon = 0.00015

tf.train.RMSPropOptimizer.centered = True
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WrappedReplayBufferLocal.replay_capacity = 1000000

WrappedReplayBufferLocal.batch_size = 32

run_experiment.Runner.game_name = ’GridFormationEnvSimple-v0’

# Sticky actions with probability 0.25, as suggested by (Machado et al., 2017).

run_experiment.Runner.sticky_actions = False

run_experiment.Runner.training_steps = 1000 # agent steps

run_experiment.Runner.evaluation_steps = 200 # agent steps

run_experiment.Runner.max_steps_per_episode = 25 # agent steps

run_experiment.Runner.num_iterations = 1000

B.2 Implicit Quantile agent parameters

# Hyperparameters follow Dabney et al. (2018), but we modify as necessary to

# match those used in Rainbow (Hessel et al., 2018), to ensure apples-to-

apples

# comparison.

import gin.tf.external_configurables

IQ.kappa = 1.0

IQ.num_tau_samples = 64

IQ.num_tau_prime_samples = 64

IQ.num_quantile_samples = 32

RainbowAgent.num_atoms = 51

RainbowAgent.vmax = 200.

RainbowAgent.gamma = 0.99

RainbowAgent.update_horizon = 3

RainbowAgent.min_replay_history = 2000 # agent steps

RainbowAgent.update_period = 4

RainbowAgent.target_update_period = 1 # agent steps, was 400

RainbowAgent.epsilon_train = 0.01

RainbowAgent.epsilon_eval = 0.0

RainbowAgent.epsilon_decay_period = 1000000 # agent steps

# IQN currently does not support prioritized replay.

RainbowAgent.replay_scheme = ’uniform’

RainbowAgent.tf_device = ’/gpu:0’ # use ’/cpu:*’ for non-GPU version

RainbowAgent.optimizer = @tf.train.AdamOptimizer()

IQ.learning_from_demo = False

IQ.boltzmann=False

IQ.prune_actions=True

# Note these parameters are different from C51’s.

tf.train.AdamOptimizer.learning_rate = 0.0000625

tf.train.AdamOptimizer.epsilon = 0.00015

WrappedPrioritizedReplayBufferLocal.replay_capacity = 10000

WrappedPrioritizedReplayBufferLocal.batch_size = 32
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run_experiment.Runner.game_name = ’GridFormationEnvSimple-v0’

# Sticky actions with probability 0.25, as suggested by (Machado et al., 2017).

run_experiment.Runner.sticky_actions = False

run_experiment.Runner.training_steps = 1000 # agent steps

run_experiment.Runner.evaluation_steps = 200 # agent steps

run_experiment.Runner.max_steps_per_episode = 25 # agent steps

run_experiment.Runner.num_iterations = 150

B.3 Rainbow agent parameters

# Hyperparameters follow Dabney et al. (2018), but we modify as necessary to

# match those used in Rainbow (Hessel et al., 2018), to ensure apples-to-

apples

# comparison.

import gin.tf.external_configurables

Rainbow.num_atoms = 51

Rainbow.vmax = 200.

Rainbow.gamma = 0.99

Rainbow.min_replay_history = 2000 # agent steps

Rainbow.update_period = 4

Rainbow.target_update_period = 1 # agent steps

Rainbow.epsilon_train = 0.01

Rainbow.epsilon_eval = 0.0

Rainbow.epsilon_decay_period = 1000000 # agent steps

Rainbow.replay_scheme = ’prioritized’

Rainbow.tf_device = ’/gpu:0’ # use ’/cpu:*’ for non-GPU version

Rainbow.optimizer = @tf.train.AdamOptimizer()

Rainbow.learning_from_demo = False

# Note these parameters are different from C51’s.

tf.train.AdamOptimizer.learning_rate = 0.0000625

tf.train.AdamOptimizer.epsilon = 0.00015

WrappedReplayBufferLocal.replay_capacity = 1000000

WrappedReplayBufferLocal.batch_size = 32

run_experiment.Runner.game_name = ’GridFormationEnvSimple-v0’

# Sticky actions with probability 0.25, as suggested by (Machado et al., 2017).

run_experiment.Runner.sticky_actions = False

run_experiment.Runner.training_steps = 1000 # agent steps

run_experiment.Runner.evaluation_steps = 200 # agent steps

run_experiment.Runner.max_steps_per_episode = 25 # agent steps

run_experiment.Runner.num_iterations = 1000
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