
University of Magdeburg

School of Computer Science

Master’s Thesis

Classification of Multilingual Legal
Text Using Deep Learning:

Evaluation of General-Purpose
Resources for Legal

Domain-Specific Task

Author:

Jay Dilipbhai Vala

13. May 2019

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake

Department of Databases and Software Engineering

Prof. Dr.-Ing. Andreas Nürnberger

Department of Data and Knowledge Engineering

Vala, Jay Dilipbhai:
Classification of Multilingual Legal Text Using Deep Learning: Evaluation of
General-Purpose Resources for Legal Domain-Specific Task
Master’s Thesis, University of Magdeburg, 2019.

Abstract

The plethora of legal corpora available online can be overwhelming and hard to
comprehend for a non-domain expert. Big law firms also need to organize and update
legal documents to keep up with changes in regulations and legislation. These law
firms employ experts who help them navigate and find useful information for legal
documents in a timely manner. Artificial Intelligence (AI) can be helpful in the
organization and exploration of these documents [MS97]. Classifying these legal
texts into higher level categories using machine learning and deep learning can help
in the organization and navigation of these huge corpora for big firms and the non-
domain expert. The diversity, the advantages and the drawbacks of these algorithms
make choosing the algorithm a time-consuming and challenging process.

This thesis goes into investigating a few popular machine learning and deep learning
algorithms with different configurations on EUR-Lex Summaries legal data for text
classification. It also examines the performance of general-purpose resources used
by deep learning algorithms on legal domain-specific data and the performance ben-
efits of using multilingual data which is widely available for the legal domain. These
experiments help us in exploring the viability of these algorithms in domain-specific
settings and improve our decision-making process. For the investigation, three differ-
ent research questions are formulated, first comparing a supervised machine learning
algorithm Support Vector Machines (SVM) to a deep learning algorithm Bidirec-
tional Long Short Term Memory (BiLSTM), second comparing the general-purpose
word embeddings to the domain-specific word embeddings for training BiLSTM
and third comparing performance evaluation of classifiers using multilingual data to
monolingual ones in BiLSTM.

Furthermore, with the limited labeled legal domain dataset, and class imbalance,
several alternate training, and evaluation strategies were formulated. The training
is done on sentences of the document with and without clustering, and the evaluation
is done of sentences as well as on documents through the combination of predictions
from the sentence. During the assessment, it is observed that adding more languages
in case of a BiLSTM indeed increases the performance of the classifier.

Acknowledgements

“Life is like a box of chocolates. You never know what you’re gonna get”
- Forrest Gump

Last year in November, I embarked on this fascinating journey of undertaking my
Master thesis unaware what lies ahead, just like a box of chocolates. It gives me
immense pleasure and a sense of satisfaction to finish this thesis. This thesis would
not have been completed had there not been a few people to support and guide me
all along.

First and foremost, I want to thank my supervisor M.Sc. Sabine Wehnert, without
whom this thesis would not have been possible in the first place. Her constant
support, discussions, and assistance at every step were very helpful. I want to
thank M.Sc. Marcus Thiel, for his assistance and suggestions on validating various
concepts, and Stefan Langer for his support and ideas.

I want to thank my Family for their moral and financial support. They stood by me
in my thick and thin. I can not even begin to describe the gratitude and appreciation
for their support.

I want to thank my friends for listening to me, and at times tolerating me. They
were like a family away from home.

Last but not least I would like to thank everyone who has supported me directly or
indirectly throughout this thesis.

Contents

List of Figures xi

List of Tables xiv

List of Acronyms xv

1 Introduction 1
1.1 Introduction . 1
1.2 Goals of this Thesis . 2
1.3 Structure of the Thesis . 3

2 Background 5
2.1 Document Categorization . 5
2.2 Machine Learning and Document Categorization 5

2.2.1 Supervised and Unsupervised Learning 6
2.3 Multi-class vs Multi-label Classification 6
2.4 K-means Clustering . 7

2.4.1 Pairwise constrained K-means 7
2.4.2 Choosing k . 8

2.4.2.1 Silhouette Score . 8
2.4.2.2 Elbow Analysis . 8

2.5 Support Vector Machine . 10
2.6 Deep Learning . 12

2.6.1 Backpropagation . 16
2.6.2 Backpropagation Through Time 18

2.7 Natural Language Processing . 19
2.8 Text Normalization . 19
2.9 Text Representation . 20

2.9.1 Term Frequency-Inverse Document Frequency 20
2.9.2 Word Embeddings . 21
2.9.3 Cross Lingual Word Embedding 25
2.9.4 Long Short Term Memory . 25

2.10 Bidirectional Long Short Term Memory 28
2.11 Sentence-based approach for training LSTMs 28
2.12 Evaluation Matrices . 30

3 Concept 33
3.1 Phase 1: Data Collection and Cleaning 33

viii Contents

3.2 Phase 2: Data Clustering and Resampling 35
3.3 Phase 3: Model Architecture and Training 37

3.3.1 Research Question 1: . 37
3.3.2 Research Question 2: . 40
3.3.3 Research Question 3: . 42

4 Implementation 45
4.1 Data Collection . 45
4.2 Data Cleaning . 46
4.3 Clustering . 47
4.4 Data Resampling . 50
4.5 Training the Word Vectors . 51

4.5.1 Training Cross Lingual Word Embedding 52
4.6 Architecture and Training . 52

4.6.1 First Research Question . 53
4.6.2 Second Research Question . 56
4.6.3 Third Research Question . 58

5 Evaluation 61
5.1 Experimental Setup . 61
5.2 Evaluation Approach . 62

5.2.1 Evaluation for the first research question 63
5.2.2 Evaluation for the second research question 67
5.2.3 Evaluation for third research question 71

6 Related Work 75

7 Conclusion, Limitaions and Future Work 77
7.1 Conclusion . 77
7.2 Limitations . 78
7.3 Future Work . 78

A Appendix 81
A.1 Backpropagation Example . 81
A.2 Calculating Micro-average Precision Recall and F1-Score 85
A.3 Visualization of word embeddings . 87

Bibliography 91

List of Figures

2.1 Computation of silhouette score s(x) with three clusters for point x
in cluster A. 9

2.2 An illustration of clusters and centroids, with three clusters and their
respective centroids C1, C2, C3 . 9

2.3 Example illustrating elbow at k = 4 10

2.4 Support Vector Machines . 11

2.5 An Artificial Neuron . 12

2.6 Artificial Neural Network . 13

2.7 Topologies of Artificial Neural Network (ANN), (a) shows feed for-
ward neural network and (b) shows recurrent neural network 13

2.8 Sigmoid activation function . 14

2.9 Rectified Linear Unit Activation Function 15

2.10 TanH Activation Function . 15

2.11 Single hidden layer neural network with one output 16

2.12 Stages of processing natural language, adapted from [ID10] 19

2.13 Comfort of “Volkswagen beetle” on scale of 0-5, rescaled to range -1
to 1 . 22

2.14 Comfort represented on x-axis and leg room on y-axis 22

2.15 Vector representation of car features in a two dimensional space, black
represents Volkswagen, red represents Mercedes and green represents
Audi . 22

2.16 Continuous bag-of-words model data set creation 23

2.17 Continuous skip-gram model dataset creation 24

2.18 Word embedding showing words like train and station close to each
other . 25

2.19 Single RNN Cell . 26

x List of Figures

2.20 Long Short Term Memory (LSTM) block with a single cell. The cell
has recurrent connections with a forget gate. The three gates collect
inputs from rest of the network. 27

2.21 Bidirectional LSTM . 29

2.22 Sliding window at time step t1, t2, t3 and t4 with the window size of
10 words per sentence and slide of 2 word per sentence per time step 29

3.1 Flow chart representing the workflow for the first research question . 38

3.2 Classification workflow for clustered data in hierarchical manner . . . 39

3.3 Flow chart representing the workflow for the second research question 41

3.4 Flow chart representing the workflow for the third research question. 43

4.1 Document Distribution of EUR-Lex summaries 46

4.2 Elbow analysis validating the value of k at 2 48

4.3 Architecture of BiLSTM for training English language corpus without
clustered data . 54

4.4 Architecture of BiLSTM for training English and German language
corpus on cluster 1 and cluster 2 data. 55

4.5 Architecture of the BiLSTM for training on an English and German
language corpus on clustered data using general-purpose word em-
beddings aligned using Facebook’s MUSE. 57

4.6 Architecture of the BiLSTM for training on an English and German
language on clustered data using domain specific embeddings trained
on the EUR-Lex dataset. 58

4.7 Architecture of the BiLSTM for training on the English and the Ger-
man language without clustered data and trained on both languages
together and separately. 59

5.1 Micro-averaged Precision, Recall and F1-Score of SVM and BiLSTM
in different configurations. The first suffix D or S indicates evaluation
on document or sentence level respectively, the second suffix E or D
represents the language of the corpus used respectively. The third
suffix N or C indicates non clustered and clustered respectively. . . . 63

5.2 Macro-averaged Precision, Recall and F1-Score of SVM and BiLSTM
in different configurations. The first suffix D or S indicates evaluation
on document or sentence level respectively, the second suffix E or D
represents the language of the corpus used respectively. The third
suffix N or C indicates non clustered and clustered respectively. . . . 64

List of Figures xi

5.3 Micro-average Precision, Recall and F1-Score of the BiLSTM trained
with general-purpose embeddings and domain-specific embeddings.
The first suffix S or D indicates the evaluation on sentence or docu-
ment level, the second suffix D or G represents the domain-specific
or general-purpose word embeddings used in the models. The third
suffix F or T indicates the status of embedding training, F represents
Frozen and T stands for Trainable. 67

5.4 Macro-average Precision, Recall and F1-Score of BiLSTM trained
with general-purpose embeddings and domain-specific embeddings.
The first suffix S or D indicates the evaluation on sentence or docu-
ment level, the second suffix D or G represents the domain-specific
or general-purpose word embeddings used in the models. The third
suffix F or T indicates the status of embedding training, F represents
Frozen and T stands for Trainable. 68

5.5 Micro-average Precision, Recall and F1-Score for the BiLSTM. The
first suffix specifies the method of evaluation (S = Sentence and D =
Document), the suffix second E, D or ED specifies the language of the
corpus, English, German or both English and German respectively.
The second suffix N represents that model is trained on non clus-
tered data. AVG-BiLSTM-ED-N represents the average score from
BiLSTM-E-N and BiLSTM-D-N . 71

5.6 Macro-average Precision, Recall and F1-Score for BiLSTM. The first
suffix specifies the method of evaluation (S = Sentence and D = Doc-
ument), the suffix second E, D or ED specifies the language of the
corpus, English, German or both English and German respectively.
The second suffix N represents that model is trained on non clustered
data. AVG-BiLSTM-ED-N represents the average score of BiLSTM-
E-N and BiLSTM-D-N . 72

A.1 Basic structure of a neural network with weights and bais initialized . 81

A.2 Visualization of ten randomly selected words for frozen word embedding 88

A.3 Visualization of ten randomly selected words for trained word embed-
ding . 88

A.4 Visualization after adding word katze and normal to the frozen em-
beddings . 89

A.5 Visualization after adding word katze and normal to the trained em-
beddings . 89

xii List of Figures

List of Tables

2.1 Comparison of word normalization techniques - stemming and lemma-
tization . 20

2.2 Vectors of cars . 23

2.3 Dataset for training continuous bag-of-words model 24

2.4 Dataset for training the continuous skip-gram model 24

2.5 Confusion Matrix . 30

3.1 An table showing documents and their assignments in their respective
classes. 35

3.2 Distribution of samples in the dataset across 5 classes. 36

3.3 Document assignment after proposed resampling 36

3.4 Distribution of samples in the dataset across 5 classes after resampling. 36

3.5 Classification algorithms for the first research question with their cor-
responding text representation techniques, the corpus used to train
them, the type of training (clustered or non clustered) and the eval-
uation strategies. 40

3.6 Classification algorithms for the second research question with their
corresponding text representation techniques, the corpus used to train
them, the type of training (clustered or non clustered) and the eval-
uation strategies . 42

3.7 Classification algorithms for the third research question with their cor-
responding text representation techniques, the corpus used to train
them, the type of training (clustered or non clustered) and the eval-
uation strategies. 44

4.1 Silhouette scores for 8 values of k . 48

4.2 Assignment of EUR-Lex summaries into clusters 49

4.3 Distribution of number of samples before and after resampling 51

4.4 Hyperparameter of BiLSTM for training English language corpus
without clustered data . 54

xiv List of Tables

4.5 Hyperparameters of the BiLSTM for training on English and German
language with clustered data using general-purpose word embeddings
created using Facebook’s MUSE python library 56

4.6 Hyperparameter of the BiLSTM for training on English and German
language with clustered data using domain-specific word embeddings
created from EUR-Lex dataset . 56

4.7 Hyperparameters of the BiLSTM for training on the English and the
German language without clustered data and trained on both lan-
guages separately and together. 59

5.1 Hardware specification for the experimental setup 61

5.2 List of packages used . 62

5.3 Document with three sentences, prediction score for each class, true
class and predicted class . 64

5.4 Class-wise precision (P) and recall (R) and F1-Score (F) for the BiL-
STM (denoted as LSTM for readability) trained on English and Ger-
man corpus evaluated on document level. The suffix C indicates the
results for clustered data. The best precision, recall and f1-scores
among both the classifiers is highlighted in blue, red and green re-
spectively. If the values across both the classifiers are same it not
highlighted. 66

5.5 Class-wise precision (P) and recall (R) and F1-Score (F) for BiLSTM-
D-ED-C-T (represented with suffix LSTM-D) and BiLSTM-D-ED-C-
T (represented with suffix LSTM-G) on evaluated on the document
level. The best precision, recall and f1-scores among both the classi-
fiers are highlighted in blue, red and green respectively. If the values
across both the classifiers are the same they are not highlighted. . . . 70

5.6 Class-wise precision (P) and recall (R) and F1-Score (F) for AVG-
BiLSTM-ED-N (represented with suffix LSTM-A) and BiLSTM-ED-
N (represented with suffix LSTM-B) on evaluated on document level.
The best precision, recall and f1-scores among both the classifiers is
highlighted in blue, red and green respectively. If the values across
both the classifiers are same it not highlighted. 73

A.1 CLass-wise precision, recall and f1-score 85

A.2 Confusion matrix for cluster 1 of BiLSTM trained on English and
German corpus . 85

List of Acronyms

AI Artificial Intelligence
ANN Artificial Neural Network

BiLSTM Bidirectional Long Short Term Memory

CNN Convolutional Neural Network

FN False Negative
FP False Positive

LSTM Long Short Term Memory

NLP Natural Language Processing

RNN Recurrent Neural Network

SVM Support Vector Machines

TF-IDF Term Frequency Inverse Document Frequency
TN True Negative
TP True Positive

xvi List of Acronyms

1. Introduction

1.1 Introduction

There is an abundance of legal corpora available online. The publications office of
the European Union (EU) offers different EU laws such as Treaties, Legal acts, Con-
solidated texts, International agreements, Preparatory documents and Summaries of
EU Legislation. It also provides EU case laws, national laws, and national case laws.
Other governments in the EU also publish legal text such as the gesetze-im-internet
website, the German Federal Ministry of Justice and Consumer Protection and the
Federal Office of Justice offerings of every federal law of Germany, the Library of
Congress for the French law and many more.

Large legal text corpora can be overwhelming and hard to comprehend for non-
domain experts, especially when jargon is used. Also, the complexity and the capri-
cious nature of the legal texts is a challenge in itself. It can also be challenging for
domain experts handling legal text written for different demographics, with different
structure, and in different languages. Some of the most common problems with the
legal texts are that it may be coming from different sources (different department
of the government or from different governments altogether), it is difficult to know
which laws overturn other laws, understanding different lexicon that changes with
contexts, authority and over time [BDCH+12]. These barriers make it challenging to
organize and aggregate these legal texts in a coherent manner. Traditional full-text
search matches the exact text, and this helps in finding relevant information, but
it is still challenging to discover all the relevant information such as in the cases
where related words and synonyms are used for search [LWHM16]. To get around
this, domain ontologies which map the relationships of synonyms, related words and
antonyms are used; however, these are hard to create and difficult to maintain.

The ongoing advancements in Artificial Intelligence (AI) and Machine Learning
which is partly due to the availability of computing power can be promising in
mitigating some of the difficulties with legal texts mentioned above. Natural Lan-
guage Processing (NLP) is a subset of AI that focuses on systems that can learn
and understand language. Artificial Neural Network (ANN) are a part of AI which

2 1. Introduction

was inspired by the biological neural network of human brain [vGB18]. They are a
framework comprising many different machine learning algorithms learning complex
data. The application of ANN is suitable for data that has noise which in case of
legal text is having no sole representation of a law, that is the perception of law is
in accordance with the requirements and needs. Secondly, there is a poor under-
standing intrinsic structure which means that there is no single entity which knows
all the laws and lastly for the data having changing characteristics [MS97].

Various methods involving machine learning and AI have been developed to solve
some of the problems with legal texts described above. de Maat et. al (2010)
[dMKW+10] have shown the effectiveness of using machine learning algorithms to
classify legal text compared to a pattern-based classification task on unseen data.
Mozina et. al (2005) [MŽBCB05] showed that argumentation-based machine learn-
ing can be made using the justification of the case laws making it suitable for legal
domain-specific tasks. Boella et. al (2011) [BDCH11] have shown that sophisticated
legal document management systems can be further improved using machine learn-
ing, the authors used classification algorithms to classify laws and integrate into an
existing system.

1.2 Goals of this Thesis
This thesis focuses on the classification tasks of legal text. There are various classi-
fication algorithms with their advantages and disadvantages. The goal of this thesis
is to evaluate these algorithms in various configurations,

Specifically, this thesis will investigate three questions,

• Can deep neural network algorithms like Long Short Term Memory
(LSTM) networks perform comparatively to the thoroughly studied
text classification algorithms like Support Vector Machines (SVM)?

The Support Vector Machines (SVM) has been thoroughly studied and applied
in text classification [CC08, FGP06, For08, Joa98, Seb02, SLB+07]. SVMs
have been shown to outperform many classification algorithms, but the sensi-
tivity of the parameters to the classification task makes them difficult to use
[CB06]. Also the text representation technique used by the SVM which is Term
Frequency Inverse Document Frequency (TF-IDF) does not capture the syn-
tactics and semantics of the text [CJMdS17]. Many deep learning classification
algorithms alleviate the problems that SVMs posses, with text representation
techniques such as word embeddings capturing the semantics and syntactics
of the text to represent its context better.

• General-purpose resources such as pretrained word embeddings are
getting better and are available from various sources and trained
using different algorithms. As they are trained on large generic web
scraped data, are they good enough for the legal domain-specific
task?

Recently, various word embeddings such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) [DCLT18], Fasttext word vectors in 157 lan-
guages [BGJM17], Flair [ABV18] and ELMo [PNI+18] were released. They,

1.3. Structure of the Thesis 3

however, use general data scraped from websites like Wikipedia or freely avail-
able news and other corpora. These corpora do not cover the highly specialized
and specific vocabulary used in the legal text; hence the effectiveness of these
word embeddings for a legal domain-specific task has to be investigated.

• Deep Neural Network algorithms like Long Short Term Memory
(LSTM) can take advantage of multilingual data, as the text rep-
resentation technique of word embeddings has been shown to work
on multilingual data. Thus, the performance of LSTMs needs to be
investigated in case of monolingual and multilingual data to see if
there is any advantage of using multilingual data.

Conventionally, multilingual text classification is done by employing a language
detector, which detects the language to be classified and then initiating a
classifier that is trained on a specific language. This naive approach does not
take advantage of the polylinguality of data for classification for a predefined
category which may benefit from this data [WYL+14]. Recent techniques
of learning bilingual word embeddings [ZSCM13, CAPLL+14] have shown to
be improving, for this reason, the effect of multilingual embeddings is to be
explored.

1.3 Structure of the Thesis

The thesis is divided into seven chapters. Chapter 2 provides details of the various
machine learning and deep learning methods, algorithms and information about doc-
ument categorization. Chapter 3 details the conceptual aspects for all the research
questions and the techniques such as data cleaning, data collections that will be used
to answer the research questions. Chapter 4 gives the detailed narrative of the tools
used in implementing the concepts, the architecture and the hyperparameters of the
algorithms provided in the Chapter 3 and the specifics of how they are implemented.
Chapter 5 provides details of the evaluation approaches and the results of all the
research questions. Chapter 6 shows the similar work done on the legal dataset,
and similar techniques used in training and evaluation of the algorithms. Chapter 7
presents the conclusion of the thesis, discusses the limitations of some approaches
and future works.

4 1. Introduction

2. Background

This chapter covers the fundamentals of document classification, how machine learn-
ing is applied for document classification. Furthermore, this chapter will provide an
overview of various machine learning, deep learning, and evaluation concepts. This
chapter will also describe the concepts of different classification algorithms employed.

2.1 Document Categorization

Document categorization also known as document classification is the analysis and
assignment of documents into some predefined classes. Categorization is an essential
part of document retrieval as without categorization it is impossible to label the
document and know when to present it to the user in response to a search query.
Manually assigning these documents (also referred to as indexing) is not feasible due
to the continuous addition of new documents every day.

Luhn first introduced the classification of documents for creating abstracts in tech-
nical resources. Luhn proposed using statistical analysis of word occurrences in the
abstract and title of the literature to assign it to a predefined category [Luh58].
Many early adaptations of document categorization techniques relied upon carefully
hand-crafted features [HW91, BFL+88]

2.2 Machine Learning and Document Categoriza-

tion

This section briefly describes concepts of machine learning and its use in document
and text categorization. Machine learning is a branch of AI that gives a computer the
capability to learn by itself and improve based on seen examples. Mitchell formally
defines it as, “A computer program is said to learn from experience E with respect to
some task T and performance measure P , if its performance measure P for the task
T improves with experience E” [Mit97]. Machine learning algorithms are broadly
divided into two categories, supervised and unsupervised learning algorithms. Su-
pervised learning algorithms learn from a given set of data and try to predict an

6 2. Background

unseen target set. Unsupervised learning algorithms learn the relationships between
elements of the provided data.

Text or document categorization is a supervised learning problem. We have a set
of training documents which are labeled and used to train the machine learning
algorithm. This trained classifier is then used on the target or test set to predict
the label.

2.2.1 Supervised and Unsupervised Learning

In supervised learning, a machine learning algorithm learns the mapping of a given
set of examples to some specified, predefined categories. Formally, let Z be the
training set given by {(a1, b1), (a2, b2), (a3, b3), ..., (an, bn)} where ai are the input
vectors to the algorithm and bi are the corresponding labels, then a supervised
learning algorithm will try to learn the mapping function,

f(a) = b (2.1)

The goal of this function is to approximate the mapping well enough that when a
new data point (a) is passed to the algorithm it can predict label (b) from the data.

Contrary to the supervised way of learning, in unsupervised learning there are no
corresponding labels; the algorithm has to model and learn the relationship of the
underlying , for example using a similarity function to determine how similarity
between two data points. It is similar to learning without a teacher. [HSP99].

2.3 Multi-class vs Multi-label Classification

Classification or categorization is the identification of an instance of data into a
predefined category or class. Classification can be broadly divided into three types,
Binary Multi-class and Multi-label classification. Multi-class classification is the pro-
cess of identifying an instance into one of the many classes. In binary classification
the instances are classified into two classes hence the term binary. Many algorithms
solve the binary classification task. Several methods have been proposed to extend
these binary classification problems into multi-class ones, as a multi-class problem
can be seen as a set of several binary class problems [Aly05]. Some of these binary
classification problems extend naturally to a multi-class problem, and some require
special transformations to do so. An examples of this natural extension are Neural
Networks as instead of having a single neuron at the output as in binary classifica-
tion, it has N neurons for N classes [B+95]. Other algorithms convert multi-class
problems into a set of binary classification problems for example Support Vector
Machines [CV95]

In the Multi-label classification problem, instead of identifying an instance of data
into a single category or class, it is classified into multiple classes. Multi-label
classification is common in case of document classification as a document might
contain aspects of different topics, so it is attributed to multiple classes. The most
common approach to tackle a multi-label problem is to transform it into n different
binary or multi-class problems, and then the predictions from these n binary or
multi-class classifiers are transformed into multi-label predictions [RPHF11].

2.4. K-means Clustering 7

2.4 K-means Clustering

It is often required to divide the data into groups to better understand it. Cluster-
ing is the method of grouping the data in such a manner that similar instances are
grouped together (in the same cluster) and dissimilar objects are grouped separately
(in different clusters). Clustering is extensively used in data mining for statistical
analysis in the earlier stages of exploratory analysis. The k-means clustering algo-
rithm is one of many unsupervised clustering algorithms.

The k-means algorithm separates data into k clusters. These clusters are such that
they are as far away from each other as possible. Each cluster has a central data
point (which is randomly initialized) called centroid, and an instance of the data
is assigned to a cluster if it is close to this center. k-means iteratively minimizes
the distance between every example of the data and the center to find the optimal
number of clusters.

Steps involved in K-means clustering is as follows,

1. Initialize k data points as centers of the clusters.

2. Calculate the distance between every data point and the centroid and based
on this distance allocate each point to the nearest cluster.

3. The cluster centers are updated by calculating the average of all the points of
that cluster.

4. If the position of the centroids changes, then the process is repeated from step
2 until there is no further change in the position of the centroid.

The process stops when the average distance between the centroids and the distance
between the points of a cluster is lowest. The minimal distance between the instances
of a cluster ensures that the cluster is compact with the least variance between the
points of a cluster.

2.4.1 Pairwise constrained K-means

Domain knowledge about the instances can be helpful in the better assignment of
the instances to the clusters. It can be used to assess which instances should be
grouped together [WCR+01]. There are two types of pairwise constraints.

• Must-link: This set of constraints specifies which of the instances of the data
should be placed in the same cluster.

• Cannot-link: This set of constraints specifies which of the instances of the
data should not be placed in the same cluster.

This is a modified version of k-means clustering with the constraints as mentioned
above. The algorithm takes data D and a set of must-link constraints and a set of
cannot-link constraints. As a result, the data is divided into k groups satisfying all
the constraints. When a data point is assigned to a cluster, the algorithm ensures
that it does not violate any of the specified constraints.

8 2. Background

2.4.2 Choosing k

To produce high quality clusters, the number of clusters (k) that the data needs
to be divided into should be known. Silhouette Score [Rou87] and Elbow Analysis
[Tho53, KS96] are two methods to find out the number of clusters.

2.4.2.1 Silhouette Score

Silhouette score is a measure of the quality of a cluster. It determines how well
an object fits the cluster assignment.There are two requirements for the creation of
silhouettes, the first thing we need is the clusters, and second, we need the proximity
between each object of a cluster.

Let s(x) be the silhouette score for element x which is placed in cluster A as shown
in Figure 2.1. We can calculate the dissimilarity (distance) a(x) between elements
x of cluster A and other elements of cluster A,

a(x) = average dissimilarity between x and other elements of cluster A (2.2)

In Figure 2.1 a(x) is represented by the average length of all the lines of cluster A.
Now we calculate the dissimilarity of element x with elements from any cluster other
than A. For example, cluster B which is different from A.

d(x,B) = average dissimilarity between x and other elements of cluster B (2.3)

In the Figure 2.1, d(x,B) is represented by the average of lines stretching from
element x in the cluster A to all the elements in the cluster B. Once this is calculated
for all the clusters, the minimum of these numbers is selected and denoted by

b(x) = minimum(d(x,B)) (2.4)

Here, for cluster B we have the minimum of b(x), so cluster B is called the neighbour
of x, this is the second best option for x, if it cannot be accommodated in cluster A.

To calculate the silhouette score of s(x), we use a(x) and b(x) obtained in Equa-
tion 2.2 and Equation 2.4

s(x) =
b(x)− a(x)

max{a(x), b(x)}
(2.5)

Hence, the higher the value of s(x), the better the assignment of the clusters.

2.4.2.2 Elbow Analysis

Elbow analysis [Tho53, KS96] is another method of finding the number of clusters
(k). The k-means algorithm works by finding the clusters which minimizes the
intra-cluster variance. The sum of squares of all the points in a cluster explains the
variance within a cluster and hence it is used in elbow analysis to find the optimal
number of clusters.

2.4. K-means Clustering 9

Figure 2.1: Computation of silhouette score s(x) with three
clusters for point x in cluster A.

Figure 2.2: An illustration of clusters and centroids, with
three clusters and their respective centroids C1, C2, C3

Elbow analysis uses the Within Cluster Sum of Errors (WCSS). WCSS is calculated
as the sum of distances of each point of a cluster and the centroid of that cluster.

For the clusters in the Figure 2.2, WCSS will be calculated as follows.

WCSS =
n∑

i=1

n∑
k=1

distance(xi,j, Ck) (2.6)

where:

xi,k = Data point i in cluster k

Ck = Centroid for cluster k

This WCSS distance is plotted against the number of clusters which show an elbow
shape; adding more clusters indicated by the elbow shape will decrease the WCSS
further and will not model the data significantly better.

10 2. Background

Figure 2.3: Example illustrating elbow at k = 4

In the Figure 2.3 we can see the elbow shape at k = 4 on the x-axis. This suggests
that we divide the data into four clusters.

2.5 Support Vector Machine

An SVM is a supervised learning algorithm. It tries to find boundaries or hyper-
planes in the given feature space which are then used for classification and regression.
An SVM tries to maximize the distance between the two points of a decision surface
[MRS10].

SVMs are based on structural risk minimization, which aims to find out a hypothesis
h for which we have the lowest true error. This true error is the probability of making
an error on unseen data. The ability of SVMs to learn from data is not dependent
on the dimension of input features which makes them ideal for text categorization
[Joa98].

To understand how an SVM works, consider the equation of a hyperplane which is
given as [FHT01],

w · x+ b = 0 (2.7)

where w represents a non-zero vector which is normal to the hyperplane, x is any
point on the same space as the hyperplane and b is a scalar. Now, let us consider
additional two hyperplanes which are normal:

w · x+ b = ±1 (2.8)

Distance of any given point xi is given by

d (w, b;xi) =
|w · xi + b|
‖w‖

(2.9)

The points on the hyperplanes defined by equation Equation 2.8 are known as sup-
port vectors. The other points have no influence on the classification process and

2.5. Support Vector Machine 11

Figure 2.4: Support Vector Machines

we can further simplify the equation Equation 2.9 by replacing the numerator with
1:

d(w, b; |w · x+ b| = 1) =
1

‖w‖
(2.10)

To optimize Equation 2.10 requires us to simply maximize ||w||−1, which is equal to
minimizing ||w||2. Hence, we need to solve the optimiztion problem

min
w,b

(
1

2
‖w‖2

)
(2.11)

The Equation 2.11 is subject to the constraint that the distance from a given point
xi must be equal to or greater than one. Otherwise, w → 0 will always be the
optimal solution.

y (w · wi + b) ≥ 1,∀i ∈ [1,m] (2.12)

A change in support vectors of the SVM will only affect the margins and changes in
any other points will not have any impact on the margins and the hyperplane found
by the algorithm. For training the SVM we need to find C which is a regularization
parameter. For large value of C the algorithm will choose a small margin hyperplane
and for small values of C the algorithm will look for larger margin hyperplane
separating the data.

12 2. Background

2.6 Deep Learning

The rise in digitization brought in the problem of the creation of vast and diverse
unstructured data. The increase in computation power and the need to analyze the
data to get a better insight of it has given rise to deep learning. Deep learning is
a subcategory of AI which is inspired by the human brain and replicates the way a
human learns. ANN is a deep learning algorithm which imitates the human brain.
A ANN has an input layer, an output layer along with hidden layers comprising of
units that process the given input. ANNs are effective tools for recognizing patterns
which are way too complicated for programmers to extract and teach the machine
to understand. ANNs exist since the last century; however, in the last decade they
have become a significant part of AI due to a technique called backpropagation and
due to the availability of computational resources.

An artificial neuron is the basic component of an ANN and is shown below in Fig-
ure 2.5.

Figure 2.5: An Artificial Neuron

Each input xi is multiplied with random weights wi. Then they are summed up with
biases bi, and then this total input is passed through the activation function.

The output of the neuron in the Figure 2.5 would be as follows:

y = f(x1w1 + x2w2 + x3w3 + b) (2.13)

Although simple in structure and computation, the full potential of these artificial
neurons is realized when they are connected to form the ANN as shown in Figure 2.6.

2.6. Deep Learning 13

Figure 2.6: Artificial Neural Network

There are two main topologies in which these neurons are connected to form ANN
as shown below.

(a) Feed forward neural net-
work

(b) Recurrent neural network

Figure 2.7: Topologies of ANN, (a) shows feed forward neural network and (b) shows
recurrent neural network

As we can see from the 2.7(a) that in a feed-forward networks the the flow of in-
formation is only in one direction, that is from the input layer to the output layer
wherein in the recurrent neural network the flow of the information is in the forward
as well as in the backward direction as shown in the 2.7(b)

Activation functions

Activation functions are important features of ANNs. Activation functions are de-
scribed as a function which converts the input into outputs. Consider the example of
the flow of current in an electric circuit similar to the flow of information in a neural
network, switch in the circuit as the activation function for that circuit. Hence, an
activation function is responsible for ON and OFF state of the circuit depending
on the input. As the biological neuron inspires the artificial neurons, the activation
function in biological from determines whether a neuron is firing.

14 2. Background

The activation function is a non-linear transformation applied to the input. When
the activation function is not applied to the inputs, the output that we get would
be a linear transformation, which is rather easy to solve but will not model many
real-world complex problems. A neural network without the activation function is a
simple linear regression model. The use of an activation function is highly dependent
on the problem at hand. Some of the most common activation functions are listed
below.

Sigmoid activation function

Sigmoid is one of the most common activation function used in neural networks. The
wide use of this activation function is a result of its ease to calculate its derivative,
which makes calculating weights easier.The sigmoid activation can suffer from the
vanishing gradient problem [BSF+94]. Vanishing gradient occurs when layers of a
neural network have gradients of 0 because layers above them have saturated between
0 and 1. [MHN13]

S(x) =
1

1 + e−x
(2.14)

Figure 2.8: Sigmoid activation function

Rectified Linear Unit (ReLU) activation function

The Rectified Linear Unit function is one of the most popular activation functions
from deep neural networks. The Rectified Linear Unit offers alternative nonlinear-
ities compared to sigmoid functions, which mitigates the problem of the vanishing
gradient, however during the optimization procedure when these units are inactive
the gradient is 0 which leads to the problem of these units never getting activated
as gradient based optimization will never adjust the weights of units which did not
activate initially [MHN13]

f(z) =

{
0 z < 0
z z ≥ 0

}
(2.15)

2.6. Deep Learning 15

Figure 2.9: Rectified Linear Unit Activation Function

Hyperbolic Tangent

Hyperbolic Tangent activation function is the ratio of the hyperbolic sine function
to the hyperbolic cosine function. This function is similar to the sigmoid function
but outputs values between -1 and 1 as it can be seen in the Figure 2.10:

f(z) = tanh(z) =
ez − e−z

ez + e−z
(2.16)

Figure 2.10: TanH Activation Function

Softmax activation function

Th softmax activation function calculates the probability distribution of a class over
all the possible classes. Hence, the softmax activation function is used in various
multi-class classification tasks in artificial neural networks [WLKF16].

f(zi) =
ezi∑K

N=1 e
zi

(2.17)

16 2. Background

Where:

f(zi) = Probability of ith class

zi = ith dimension output

N = Total number of classes

2.6.1 Backpropagation

Backpropagation is shorthand for “backward propagation of errors”. In feed-forward
neural networks information flows from the input layer to each hidden layer to pro-
duce the output which is referred to as forward propagation or forward pass.
This forward pass continues to produce a scalar cost that is simply the difference
between the target (what the network should have produced, true target) and the
output (what the network produced). The backpropagation or backward prop-
agation algorithm allows this cost to flow backward in the network to calculate the
new weights of the network [GBC16]. It is the learning procedure which fine-tunes
the weights of the connections of the network to minimize the error between the
input the network is given and the output vector which is desired [RHW+88].

Consider a simple neural network with one input layer with 3 inputs namely x1, x2
and x3, one hidden layer consisting of 2 neurons h1 and h2, and one output neuron,
o1. The activation function is a sigmoid activation and the cost function is simple
Euclidean distance.

Figure 2.11: Single hidden layer neural network with one output

Forward pass

In the forward pass the network will calculate the net output of the hidden neurons,
then apply the activation function to calculate the output of the hidden neurons and
continue the process for the output layer neurons in the following way,

neth1 = (x1w1 + x2w3 + x3w5 + b1) (2.18)

neth2 = (x1w2 + x2w4 + x3w6 + b2) (2.19)

2.6. Deep Learning 17

Applying the activation function (sigmoid activation) to the net output of the neu-
rons of the hidden layers is done as follows:

outh1 = σ(neth1) (2.20)

outh1 =
1

1 + e−neth1
(2.21)

outh2 =
1

1 + e−neth2
(2.22)

Then the net output of the output layer is calculated by,

neto1 = (h1w7 + h2w8 + b) (2.23)

Applying the activation function to the net output to calculate the output of the
output neuron o1

outo1 =
1

1 + e−neto1
(2.24)

After the output at the output layer is obtained, the network will calculate the error
or the cost function,

E(target,output) =
∑ 1

2
(target− output)2 (2.25)

Etotal = Eo1 (2.26)

Etotal =
1

2
(targeto1 − outo1) (2.27)

The error is calculated, and this error is then used in the backward pass to calculate
the new weights so that the error is minimized by the update (Summation

∑
in the

Equation 2.25 indicates that the error will be calculated for each output neuron and
then summed up).

Backward Pass

To update the weights of the network, the effect of the error on those weights is
calculated, that is ∂E

∂w
, which is the rate of change of the error function with respect

to the weights also referred to as gradient with respect to w. This is calculated by
the chain rule of calculus which is used to calculate the derivative of an unknown
function by calculating the derivative of known functions.

The derivative of ∂Etotal

∂w7
using the chain rule is as follows,

∂Etotal

∂w7

=
∂Etotal

∂outo1
∗ ∂outo1
∂neto1

∗ ∂neto1
∂w7

(2.28)

18 2. Background

Calculating each term individually,

∂Etotal

∂outo1
= change in total loss w.r.t output of o1 (2.29)

From Equation 2.30, we can write,

Etotal =
1

2
(targeto1 − outo1)2 (2.30)

Taking the partial derivative of Etotal with respect to outh1 , the part 1
2
(targeto2 −

outo1)
2 becomes 0 because outh1 does not affect it and hence it is a constant.

∂Etotal

∂outo1
= 2 ∗ 1

2
(targeto1 − outo1)2−1 (2.31)

Now for the second term in the equation Equation 2.28, we find out the rate of
change of outo1 w.r.t. neto1 , hence we need to calculate the partial derivative of the
sigmoid function.

outo1 =
1

1− eneto1
(2.32)

∂outo1
∂neto1

= outo1 ∗ (1− outo1) (2.33)

(2.34)

Finally, how much the neto1 changes w.r.t w7,

neto1 = w7 ∗ outh1 +W8 ∗ outh2 + b2 (2.35)

∂neto1
∂w7

= 1 ∗ outh1 ∗ w
(1−1)
7 + 0 + 0 (2.36)

Calculating the new weight value w7 using all the values from Equation 2.28,

w7new = w7 − learning rate ∗ ∂Etotal

∂w7

(2.37)

(2.38)

To understand the process of backpropagation, please refer to Section A.1.

2.6.2 Backpropagation Through Time

The Backpropagation through Time (BPTT) is an extension of Backpropagation
which is based on transforming a feedback network to a feedforward network by un-
folding it over time [AIS04]. Therefore, when a network processes a sequence which
is n times long, then n duplicate networks are created, and the feedback connections
are changed to be feed-forward connections from one duplicate to another. This
method is similar to training a large feed-forward neural network with weights being
modified and treated as shared weights.

2.7. Natural Language Processing 19

2.7 Natural Language Processing

Natural Language processing is a the sub-field of AI which deals with natural lan-
guages. Natural language in a written form is converted into numbers that a com-
puter can process to find patterns. These patterns then can be used for various
purposes such as text summarization, sentiment analysis and many more.

Processing and analyzing natural language can be divided into five stages [ID10] as
shown in the figure below.

Text

Tokenization

Syntactic analysis

Semantic analysis

Pragmatic analysis

Intended Meaning

Figure 2.12: Stages of processing natural language, adapted from [ID10]

Taking an example of a sentence, tokenization is dividing the sentence into individual
tokens (words or characters). Syntactic analysis is the analysis of the order and the
structure of these tokens. Semantic analysis refers to the analysis of the meaning of
words and their relations. Pragmatic analysis studies the context in text.

2.8 Text Normalization

Textual data contains a lot of inflection. It is the process of word formation which
happens due to the representation of words for different grammatical categories such
as tenses, voices. Removing these inflections for processing text is necessary.

Stemming and Lemmatization are two techniques used to normalize the text. Both
techniques reduce the words to their root form. Stemming reduces the word into
their base form, but this base may or may not be the morphological root of the
word. It should be sufficient that the related words are mapped to the same base,
even if the base is not a valid root. For example, words argued, arguing, argue and
argues will all be stemmed to argu, even though the base argu is not a valid term in
itself. The process of stemming is more heuristic. It removes affixes such as -ed,-ize,

20 2. Background

-s,-de without taking into account that the base might not be a word in the same
language. On the other hand, lemmatization reduces the words by ensuring that the
base belongs to the language. The base word in lemmatization is called a lemma.
Lemmatization requires a complete dictionary of the language being dealt with and
morphological analysis to lemmatize correctly. Lemmatization is used in cases where
it is necessary to get valid words and also in cases where verbs and nouns are to be
treated differently.

Words Stemming Lemmatization
argue argu argue

arguing argu argue
argued argu argue
argues argu argue

Table 2.1: Comparison of word normalization techniques - stemming
and lemmatization

2.9 Text Representation

All text-based computer systems require some representation of textual data de-
pending on the type of problem at hand. Unlike other data formats, textual data is
semi-structured or even unstructured. The representation of text in such a system
is done by transforming the text into a numerical form. Detailed below are two of
the most popular text representation techniques, TF-IDF, and Word Embeddings.

2.9.1 Term Frequency-Inverse Document Frequency

TF-IDF is the most common weighting method for describing textual data. Machine
learning techniques such as Support Vector Machines and K Nearest Neighbours
make use of this weighting scheme for text categorization. This technique works by
first calculating Term Frequency which is how often a word appears in a particular
document and Inverse Document Frequency which measure how infrequent a term
is in the corpus [SM05].

Term Frequency is calculated as follows,

tfa,b =
na,b∑
k na,b

(2.39)

where:

a = word in the document

b = document from corpus

k = total documents in the corpus

na,b = frequency of word a in document b

Inverse Document Frequency (IDF) is a measure of the importance of a word. In the
case of Term Frequency all the words are considered equally important, but in the

2.9. Text Representation 21

case of Inverse Document Frequency, not all words are considered equally. While
IDF measures the importance of words in the corpus, some words which are referred
to as stop words such as is, of, are, the which appear quite often in the document
are of very little importance. Hence IDF will weigh less the frequently appearing
words in the corpus compared to rarely appearing words. [Rob04].

idfw = log
Z

za
(2.40)

where:

Z = number of documents in corpus

za = number of documents with term a in it

From equation Equation 2.39 and Equation 2.40, the TF − IDF score is computed
as,

wa,b = tfa,b × log
N

na

(2.41)

2.9.2 Word Embeddings

Conventionally, text representation in natural language processing involves tech-
niques like the bag-of-words model in which text is represented by the words in
the text (like a bag with all the words of the text without any order), the skip-gram
model which is a generalization of n-gram models where the words do not need to be
successive for the text in consideration but can be skipped, hence named skip-gram
[GAL+06] and TF-IDF. These techniques are a simple representation of various
features of a text. However, in these techniques, the order of the words and the
grammar is not considered. Hence, these techniques do not capture the semantics
of the text. [MDP+11].

Due to the limitations mentioned above, word embeddings were introduced. Word
embeddings are a vector representation of the meaning of words in the corpus. This
means that words are placed in a high-dimensional vector space where words with
a similar meaning are placed close to each other.

To better understand how word vectors are employed, we consider an example of
reviews of cars from 0 to 5 in various categories, where 0 is worst, and 5 is the best
category. A car “Volkswagen beetle” scores a 3 on comfort (one of the evaluation
criteria). We can represent this score on a scale of -1 to 1 as shown in Figure 2.13.

Now, this representation as shown in Figure 2.13 does not consider all the aspect
of the car. Therefore, we consider another evaluation criterion leg room (amount of
space for your legs) where Beetle scored 4. Hence we represent it on a scale of -1
to 1 and add another dimension to the Figure 2.13 which represents the leg room
category as shown in Figure 2.14.

22 2. Background

Figure 2.13: Comfort of “Volkswagen beetle” on scale of 0-5,
rescaled to range -1 to 1

Figure 2.14: Comfort represented on x-axis and leg room on
y-axis

Figure 2.15: Vector representation of car features in a two
dimensional space, black represents Volkswagen, red

represents Mercedes and green represents Audi

Adding the comfort and leg room scores of a few other cars we have a vector repre-
sentation of those cars in a two-dimensional space Figure 2.15.

Suppose someone likes his/her Mercedes and is in search of a similar car based on
those two evaluation criteria. Using the vectors from Figure 2.15, we can easily find
the similarity between two cars with the help of cosine similarity.

cosine-similarity (Volkswagen, Mercedes) = 0.955 (2.42)

2.9. Text Representation 23

Cars Vectors
Volkswagen 0.2, 0.4
Mercedes 0.1, 0.6

Audi -0.3, 0.5

Table 2.2: Vectors of cars

cosine-similarity (Volkswagen, Audi) = 0.536 (2.43)

cosine-similarity (Mercedes, Audi) = 0.761 (2.44)

Adding more dimensions will capture more information and can increases the quality
of the results. These vectors represent the cars with numbers which is necessary for
machines to understand and also we can calculate similarities between these vectors.
This is the basic principle as to why represent words as numeric vectors.

One popular algorithm is for learning the word vectors is Word2Vec [MCCD13],
in this implementation word vectors also known as word embeddings are trained
using two models, continuous bag-of-words model and continuous skip-gram model.
In continuous bag-of-words, the projection of words into the vector space is not
influenced by the order of words and words from the future are also used in this
model. The continuous skip-gram model tries to increase the classification of the next
word based on other words in a fixed window sized sentence, rather than predicting
words based on the context. The main difference between both approaches is that
in the continuous bag-of-words method, the model predicts words based on other
words in its proximity and in the continuous skip-gram method, the model predicts
the neighboring words based on the current word.

Consider the following sentence to understand how the aforementioned methods
works,

I am the master of my fate, I am the captain of my soul - Invictus,
William Ernest Henley.

Continuous Bag-of-words Model

This model works by considering words not only from a few words in the past but
also a few words from the future to predict the target word.

Figure 2.16: Continuous bag-of-words model data set
creation

Consider a target word “fate”, and we want to predict it; thus we take a sliding
window over the sentence and create a dataset for training the word vectors as
shown in Figure 2.16.

This process will continue for the whole sentence in this case and the entire corpus
in case we have a large dataset. This dataset is feed into a neural network.

24 2. Background

Input 1 Input 2 Input 3 Input 4 Output
i am master of the

am the of my master
the master my fate of

master of fate i my
of my i am fate

Table 2.3: Dataset for training continuous bag-of-words model

Continuous Skip-gram Model

This model tries to predict the neighboring word based on the current word. So the
training process for the sentence mentioned above is as follows.

We can take a sliding window over the sentence and construct a dataset for training
the skip-gram model,

Figure 2.17: Continuous skip-gram model dataset creation

To understand how the dataset for continuous skip-gram training of the word2vec is
created, consider the word “the” as input, and then we start building dataset around
it. Two words before the word “the” and two words after it are taken as outputs as
shown in the Table 2.4

Input Output
the i
the am
the master
the of

Table 2.4: Dataset for training the continuous skip-gram
model

This process will continue for the whole sentence until each every word of the sen-
tence is in the training dataset against its neighboring words. This dataset is then
fed to the untrained neural network to predict the output.

After the network converges, words with similar meaning are placed together in the
embedding space. For example, words like “train” and “station” are placed close
vicinity of each other in the vector space.

Figure 2.18 below shows words such as train, terminal, truck placed in close prox-
imity of each other.

2.9. Text Representation 25

Figure 2.18: Word embedding showing words like train and
station close to each other

2.9.3 Cross Lingual Word Embedding

Word vectors for different languages are in different vector spaces; hence they cannot
be combined, but for classifying multilingual text, vectors from all the languages
need to be in a single vector space or it has to be aligned into a single vector space.
Using a single model for classification not only mitigates the error caused by a
language detector in multilingual systems, where a language detector first detects
the language and then the respective classifier is invoked. In that affair, the error
propagates downwards and amplifies.

To train multilingual word embeddings Duong et al. [DKM+16], proposed using
bilingual dictionaries and monolingual data. Their model uses an extension of the
continuous bag-of-word (CBOW) model [MCCD13]. This method has benefits as
often there is no parallel (multilingual text aligned together) data when working on
domain-specific problems; also it is comparatively easy to obtain or create bilingual
domain-specific dictionaries.

Facebook’s MUSE Python library [CLR+17] aligns word vectors from multiple lan-
guages into a single vector space, they have used monolingual word embeddings
trained using Facebook’s Fasttext’s [BGJM17] tool and aligned them in a common
vector space. MUSE’s algorithm learns the mapping between two embeddings and
then aligns them together. It exploits the similarities of a monolingual embedding
space [MLS13] to learn their mapping for alignment.

2.9.4 Long Short Term Memory

Neural networks have shown remarkable capabilities in processing and modeling
natural language. Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs) are common architectures for handling natural language. The

26 2. Background

LSTM [HS97] is a variant of RNNs, unlike other feedforward neural networks these
networks have recurrent connections in them which allow the information to persist.

Figure 2.19: Single RNN Cell

The Figure 2.19 shows a single RNN cell having a recurrent connection. This recur-
rent connection allows it to retain the previous state and makes use of its context
[GLF+09]. Due to this property RNNs are very effective in processing text.

RNNs are effective but suffer from the problem that their capacity to retain the
previous states is fairly limited. Due to this the influence of the input either di-
minishes or increases exponentially. This is referred to as the problem of vanishing
and exploding gradients [HBF+01]. The problem of the vanishing gradient makes it
tough for an RNNs to make use of more than a few previous states. LSTMs are a
special kind of RNNss which address the issue of vanishing gradients. They contain
recurrently connected sub-networks called memory blocks, and each of these blocks
contains three gates; the input gate, the forget gate and the output gate. These
gates allow an LSTM to store information for a longer period. If the input gate is
closed, that is if it has no activation (or close to 0), the activation of the block will
not be overwritten for the next incoming inputs. Also, the activation of the block
is only available to the network if the output gate is open. The forget gate switches
the recurrent connections on and off.

2.9. Text Representation 27

Figure 2.20: LSTM block with a single cell. The cell has
recurrent connections with a forget gate. The three gates

collect inputs from rest of the network.

An LSTM network learns the mapping of an input sequence to the output sequence
using the following equations one by one from time t = 1 to n. Hence, the equations
for the respective gates and the cell states are as follows:

it = σ(wi[ht−1, xt] + bi) (2.45)

ft = σ(wf [ht−1, xt] + bf) (2.46)

ot = σ(wo[ht−1, xt] + bo) (2.47)

where:

it = input gate

ft = forget gate

ot = output gate

σ = sigmoid function

Wi = Weight matrix of input gate

Wf = Weight matrix of forget gate

Wo = Weight matrix of output gate

ht−1 = output from previous block at time t− 1

bi = bias for input gate

bf = bias for forget gate

bo = bias for output gate

28 2. Background

The Equation 2.45 is for the input gate which allows new information is to be
stored in the cell state. Equation 2.46 is for the forget gate which is responsible for
discarding information that is not useful anymore from the cell state. Equation 2.47
is for the output gate which is responsible for the activation of the whole LSTM
block at time t

c̃t = tanh(weightcell[ht−1, xt] + baiscell) (2.48)

ct = ft � ct−1 + it � c̃ (2.49)

ht = ot � tanh(ct) (2.50)

where:

c̃t = new contender for cell state at t

ct = current cell state at t

� = element-wise product

At any given time step, the current cell state calculates what is to be forgotten, that
is ft � ct−1 from Equation 2.49 and which new cell state to be established from the
current time step, that is it � c̃ form Equation 2.49. These are then passed through
a tanh function to filter out which of the two should be forgotten and which should
be the output at the current time step. The output ht can then be passed through
a softmax function to get the prediction probabilities for the current block.

2.10 Bidirectional Long Short Term Memory

Bidirectional Long Short Term Memorys (BiLSTMs) are able to process a given
sequence in both directions (forward and backward) [SP97]. In Figure 2.21 we can
see that a BiLSTM contains two layers out of which one processes the sequence in
the forward direction and one processes the sequence in the backward direction. The
output layer is connected to both layers which enables it to process both forward
or future context and backward or past context. BiLSTMs have been show to
performed better than standard LSTMs and RNNss in sequence learning problems
[BBF+00] [FSS99].

From Figure 2.21, it can be seen that there is no connection between the forward
passing layer and backward passing layer, hence outputs from the forward pass
are not connected to the input of the backward pass and vice versa, so training a
BiLSTM is the same as unidirectional LSTM for the most part.

2.11 Sentence-based approach for training LSTMs

Documents containing legal text are often very long. Although these long sequences
can be processed and trained using LSTMs [HS97] theoretically, practically it is
often limited by hardware. To process such long documents, they can be divided
into smaller sub-texts which are easy to process. In [VA16], the authors have di-
vided the text into sub-texts to consider the dependencies between the written text.

2.11. Sentence-based approach for training LSTMs 29

Figure 2.21: Bidirectional LSTM

Various other techniques have been studied and applied on textual data on various
levels. Text data has been annotated, on document level [MO06], on paragraph level
[FOD+09], on sentence level [SHMO09, SEK+08] and on the phrase level [WWH05]
for various NLP tasks.

A sliding-window based approach is also used in this thesis for breaking the long
documents into smaller chunks.

To understand how the sliding window algorithm works, consider a quote by Ma-
hatma Gandhi - “A man is but the product of his thoughts; what he thinks, he
becomes.”

Figure 2.22: Sliding window at time step t1, t2, t3 and t4
with the window size of 10 words per sentence and slide of 2

word per sentence per time step

Figure 2.22 shows a sliding window, with a window size of 10 words per sentence
and a slide of 2 words per sentence to create four sentences at each time step t1, t2,

30 2. Background

t3 and t4. The following is the list of sentences that the algorithm will create with
the configuration as mentioned above.

• Sentence 1 at time step t1: a man is but the product of his

• Sentence 2 at time step t2: is but the product of his thoughts what

• Sentence 3 at time step t3: the product of his thoughts what he thinks

• Sentence 1 at time step t4: of his thoughts what he thinks he becomes

In the case when there are fewer words left than the specified length of the window,
then the process will halt with the remaining words in the last sentence.

This approach not only enables us to train the LSTMs on long text sequences but
it also increases the training data. Each sentence created by applying the sliding
window approach on a single document will have the same class label as the docu-
ment. Therefore if Doc A → Class 1 then all the sentences of that corresponding
document will be labeled as Class 1

2.12 Evaluation Matrices

The evaluation of a classification model is an essential task. An evaluation of a model
gives us insights on how the model will perform in the real world. The following
is the list of evaluation measures used in this thesis to evaluate the classification
performance of the models.

To evaluate the performance of any multi-class classification model, we need first to
understand the confusion matrix.

A confusion matrix shows the performance of a classifier in a tabulated form on data
where the labels of the data are known.

Actual Values
P N

P True Positive False Positive
Predicted Values

N False Negative True Negative

Table 2.5: Confusion Matrix

• Positive (P): Positive condition (e.g. is mango)

• Negative (N): Negative condition (e.g. is not a mango)

• True Positive (TP): Number of instances that were Positive (P) and iden-
tified and as Positive (P) by the algorithm.

• False Positive (FP): Number of instances that were Negative (N) but iden-
tified as Positive (P) by the algorithm.

2.12. Evaluation Matrices 31

• True Negative (TN): Number of instances that were Negative (N) and
predicted as Negative (N) by the algorithm.

• False Negative (FN): Number of instances that were Positive (P) but iden-
tified as Negative (N)

Accuracy

Accuracy is the ratio of the number of rightly identified instances of all classes over
the total number of instances in the dataset.

Accuracy =
Number of correct predictions

Total number of predictions
(2.51)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.52)

Precision

Informally, precision indicates how many of the positive instances were identified
correctly. Formally, it is the ratio of TP and sum of TP and FP.

Precision =
Correctly identified positive instances

Total number of positive instances
(2.53)

Precision =
TP

TP + FP
(2.54)

Recall

Recall also known as True positive rate is the number of positive values that are
correctly identified, that is the ratio of TP and sum of TP and FN.

Recall =
Correctly identified positive conditions

Total number of positive prediction by algorithm
(2.55)

Recall =
TP

TP + FN
(2.56)

F-measure (F1-Score)

F-measure is the harmonic mean of precision and recall. The harmonic mean is
one of the several averaging strategies applicable in a situation where the average of
rates is needed. It is expressed in terms of precision and recall as following,

F-measure (F1-Score) =

(
precision−1 ∗ recall−1

2

)
(2.57)

F-measure (F1-Score) = 2 ∗ precision ∗ recall
precision+ recall

(2.58)

32 2. Background

Macro and Micro Averages

Precision, Recall, and F-measure will give us the performance of the classifier on
individual classes and to represent the performance of the classifier on the whole
dataset we need to average these values across all the categories. The results of
averaging the values of precision, recall, and f-measure across all the classes in case
of an imbalance and/or multi-label dataset is misleading as it will weigh each class
equally even though the number of samples in some categories was higher and there-
fore the effect of these classes on precision, recall, and f-score will be more.

Consider the following example:

• Class A: 5 TP and 5 FP

• Class B: 1 TP and 1 FP

• Class C: 20 TP and 90 FP

• Class D: 10 TP and 10 FP

By calculating precision on these classes we get, PA, PB, PD = 0.5 and PC = 0.2.

In macro-average, first the individual precision is calculated, and then the these
precision values are averaged [MRS09], so macro-average is:

macro-average precision =
0.5 + 0.5 + 0.5 + 0.18

4
= 0.42 (2.59)

The problem is quite clear as class C which is 84% of the total dataset is represented
in the macro-average precision by 1

4
ratio [MRS09].

To mitigate this, in micro-average, we sum up all the predictions of all the classes and
then compute the average. So, the micro-average precision for the above example
would be:

micro-average precision =
5 + 1 + 20 + 10

10 + 2 + 110 + 20
= 0.2535 (2.60)

Hence, if the performance of micro-average metrics is better than the performance of
macro-average metrics, it means that the classifier is performing better on minority
classes.

3. Concept

This chapter describes in detail the conceptual aspects of this thesis. The concept is
divided into three phases, in the first phase data collection and cleaning aspects are
described, in the next phase clustering, and resampling of the data is described, and
in the last phase, machine learning and deep learning models with their evaluation
strategies are described.

3.1 Phase 1: Data Collection and Cleaning

In the first phase, the data collection techniques are described in detail, also how the
data was cleaned to make it suitable for the machine learning algorithm is described
here.

Data Collection

Legal laws are written to be applicable in various situations. For example, a law for
agricultural products may be applicable in cases where trading of goods happens.
Laws are also comprised of many languages so that they can be used by various
nations. The applicability of these legal texts in different situations makes the
classification of these texts a multi-label classification problem.

There are many datasets available for the legal domain. CFPB Credit Card Agree-
ments DB1, EUR-Lex Dataset2 are some well known datasets for legal domain-
specific tasks. However, the CFPB credit card agreements dataset is not available in
the German language and also it is about one specific topic in the legal domain. The
EUR-Lex Dataset is a large dataset available in both English and German, which
was scraped from the Publication’s office of European Union’s website [MF10]. This
dataset consists of 19,348 documents for a single language divided into 201 topics.
This dataset is too large to handle as there are 201 classes given the amount of
resources available to scrape, process and train the models. So instead EUR-Lex

1http://www.consumerfinance.gov/credit-cards/agreements/
2http://www.ke.tu-darmstadt.de/resources/eurlex

34 3. Concept

summaries are selected. This EUR-Lex Summaries3 are also from the Publication
office of the European Union’s Parliament. These summaries are the European
Union’s laws explained and translated into a reader-friendly language. They cover
32 topics which correspond to the activity areas of the European Union. These
summaries are available in multiple languages. The EUR-Lex summaries dataset
is highly imbalanced. For this thesis, only English and German languages are con-
sidered. The summaries are not available in an easy, click to download manner,
and hence they have to be crawled from the European Union’s publication office’s
website. These summaries frequently change as the laws of the union change or if a
new law is introduced.

While scraping the summaries, data from both languages need to be scraped to-
gether. This ensures that we are not missing out any summary from either of the
languages for a fair comparison of multilingual and monolingual models. Saving
the summaries from different languages separately could create the problem of data
leaking between the English and the German version of the same document, which
is the result of splitting data randomly for training and testing. For example, Doc
A which belongs to class 1 in English and Doc B which is the same document but
in German which also belongs to class 1. Now, when spitting the data for training
and testing Doc A might end up in the training set, and Doc B might end up in
the testing set.

Data Cleaning

Text data is unstructured and noisy, meaning that it is not organized in a predefined
manner and noisy because it contains a lot of information that may not be of any
use for the task at hand. These irregularities make it difficult for a machine learning
algorithm to learn from it. Textual data is non-uniform as the structure and content
changes from one document to another, due to this non-uniformity it is challenging
to have a single cleaning mechanism for all machine learning problems involving
text. For example, a machine learning task that is designed to detect events might
need date and time to effectively predict the event, whereas it would be viable to
remove them for a sentiment analysis task.

Legal text is different from other text available because of the style, structure
[BDCH11] and the use of special characters which are exclusive to the legal text.
General text preprocessing techniques become feeble, hence during preprocessing of
legal text special care is taken. The data set used here is the summarised version
of the original legislation, which contains links to the original documents as well as
background information about the law and other information that might not con-
tribute anything in the classification process. These chunks of information can be
removed, but it is particularly hard to remove them as they do not follow any pat-
tern to where they appear in the document. Due to this reason, even though this
information will increase the training time, it was not removed due to its demanding
effort.

3https://eur-lex.europa.eu/browse/summaries.html

3.2. Phase 2: Data Clustering and Resampling 35

3.2 Phase 2: Data Clustering and Resampling

In the second phase, the data is first resampled and then clustered to prepare the
data for training in the next phase. Also, in this phase, the word embeddings are
created.

Data Resampling

Data for almost all the real world applications is in skewed distribution, and EUR-
Lex summaries are no exception. Skewed distribution is when we have more samples
in one class than others [WY12]. The skewed distribution also known as class im-
balance in data is a difficult situation for a classifier to learn from as the classifier
may be biased towards the majority classes and may shows poor performance on
minority classes. Also, in the case of class imbalance in the dataset, accuracy is not
a good performance evaluation measure [CBHK02].

To handle the imbalances in the dataset various techniques have been proposed.
Oversampling and Undersampling are the two most common ones. Oversampling
refers to the process of artificially increasing the number of samples in the minority
classes, and Undersampling is when we remove instances from the majority class
to even out the dataset. Undersampling in our case would mean that we reduce
the instances from the majority classes which are few for classification task. And
we could not find any work of oversampling a domain-specific and limited textual
dataset using techniques like SMOTE [CBHK02]. Also it is questionable whether
adding noisy artificial instances by SMOTE could really increase performance, given
the small size of the dataset to train a generating algorithm.

The EUR-Lex summaries have multiple labels per document, this is generally the
case with legal text as a single case may be applicable to many situations. So having
multiple labels for a single document can be exploited to alleviate the skewness in the
dataset. The sampling of the documents is done in such a way that it reduces samples
from the majority classes on the basis of its presence in the minority classes. Hence,
a document will be labeled as belonging to the class with the the fewest examples.

The resampling technique can be better understood with the following example.
Consider the dataset in the Table 3.1 and the distribution of samples across classes
in Table 3.2.

Doc ID Class Label
Document A 1,5,2
Document B 3,2,5
Document C 4,1,5
Document D 2,3
Document E 2,5

Table 3.1: An table showing documents and their assignments in their
respective classes.

36 3. Concept

Class ID Number of Samples
1 2
2 4
3 1
4 1
5 4

Table 3.2: Distribution of samples in the dataset across 5 classes.

When applying the proposed resampling technique to the dataset in Table 3.1 and
Table 3.2, Document A which has label 1,5 and 2 will be assigned to class 1 because
the number of samples in class 1 are less than the number of samples in class 2 and
class 5, similarly Document B will be assigned to class 3, Document C to class
4, Document D to class 2 and Document E to either 2 or 5. After resampling
the Table 3.1 have labels shown in Table 3.3 and the multi-label dataset becomes a
multiclass dataset.

Doc ID Class Label
Document A 1
Document B 3
Document C 4
Document D 2
Document E 2 or 5

Table 3.3: Document assignment after proposed resampling

Class ID Number of Samples
1 1
2 1 or 2
3 1
4 1
5 0 or 1

Table 3.4: Distribution of samples in the dataset across 5 classes after
resampling.

3.3. Phase 3: Model Architecture and Training 37

Data Clustering

To see the effect of clustering, after resampling, the data is divided into n groups.
To find the number of groups that the data can be divided into, a calculation of
Silhouette Score and an Elbow Analysis are performed as described in Section 2.4.2.
The division is so that all documents d of a category Cl will be grouped together in
the same cluster Kn via must-link constraints.

That is, every document of a single class label must be present in a single clus-
ter (must-link constraints). Each document will be assigned to the closest cluster
without violating the must-link constraints. To achieve this, a constrained version
of the k-means algorithm is applied (see Section 2.4.1). Only must-link constraints
are used in the form of class labels, as each document will belong to one of the 32
classes, however cannot-link constraints, can not be obtained as we do not possess
this information or have any prior knowledge about which two documents will not
belong together.

When splitting the data in disjunct cluster, the number of classes to be predicted
by each multi-class classifier of a cluster is reduced, thus resulting in specialization
advantages for each classifier.

Monolingual and Bilingual Word Embeddings

The training of the word embeddings is the last step of the second phase. Three
word embeddings are created, the monolingual word embedding, one bilingual word
embedding trained on legal data and another bilingual word embedding trained on
general-purpose data.

The details of the training the word embeddings will be discussed in the next chapter.

3.3 Phase 3: Model Architecture and Training

The third phase goes into details regarding the conceptual aspect of the three re-
search questions. Different evaluation strategies for comparing them are introduced.

3.3.1 Research Question 1:

The first research question is:

Can BiLSTMs achieve better results in terms of the evaluation metrics
(Precision, Recall, and F-Score) than the thoroughly studied text classi-
fication methods such as Support Vector Machines?

Figure 3.1 shows the workflow for the above-mentioned research question. After
acquiring the data from the EUR-Lex website, the data is cleaned or prepossessed
(see Section 3.1). Upon preprocessing, the textual data needs to be converted using
a suitable text representation technique according to the algorithm it will be trained
on. Here, there are two algorithms being tested, SVM and BiLSTM, and both of
them employ different techniques to represent text for training (See Section 2.9).

38 3. Concept

The SVM uses the TF-IDF representation whereas the BiLSTMs uses the Word
Embeddings.

Due to hardware limitations training the BiLSTM is difficult if the length of a text
sequence is very large. Hence each document is divided into sentences using the
sliding window technique (See Section 2.11) and the document label is assigned to
each sentence created from that document.

Figure 3.1: Flow chart representing the workflow for the first research
question

To see the effect of clustering on the classification process, one classification model
is trained on clustered data in a hierarchical manner. The clustered data contains
documents from the corpora of both the languages; this is because clustering on a
corpus of a single language will result in very less data for the clusters. This will
show us if there is any improvement in classification performance of the classifier
with the specialization advantage discussed in Section 3.2. The training workflow
for the BiLSTM (with clustering) is shown below in Figure 3.2,

3.3. Phase 3: Model Architecture and Training 39

Figure 3.2: Classification workflow for clustered data in hierarchical
manner

Evaluation

The SVM is trained on full documents, and the BiLSTM is trained on the sentences
created using the sliding window technique, for this reason, results from both models
cannot be compared. Ferguson et al. [FOD+09] performed sentiment analysis of
financial blogs on paragraph-level annotated text, they summed up the predictions
given by the classifier. Similarly, in our case, the classifier gives a probability to
each sentence belonging to each class. As each document is comprised of sentences,
if we add all the probabilities for each class across all the sentences of a document
we get probabilities for every class for that document, and then we assign the class
with highest probability score to the document. The classification algorithm trained
on clustered data yields n different sets of predictions, i.e., the scores from the n
clusters are averaged to get the score on the whole dataset.

40 3. Concept

The Table 3.5 lists all the details of the classification algorithms used for the first
research question.

Classification
Algorithm

Text Repre-
sentation

Corpus
Type of
training

Evaluation
Strategy

SVM TF-IDF English
Non

Clustered
Document Level

BiLSTM

Monolingual
Word

Embeddings
(Legal Text)

English
Non

Clustered

Document Level
and Sentence

Level

BiLSTM
Bilingual Word

Embedding
(Legal Text)

English
and

German

Non
Clustered

Document Level
and Sentence

Level

BiLSTM
Bilingual Word

Embedding
(Legal Text)

English
and

German
Clustered

Document Level
and Sentence

Level

Table 3.5: Classification algorithms for the first research question with
their corresponding text representation techniques, the corpus used to
train them, the type of training (clustered or non clustered) and the

evaluation strategies.

3.3.2 Research Question 2:

The second research question is:

Are general-purpose resources such as pre-trained word embeddings in
case of LSTMs applicable to specific legal domain tasks in terms of the
evaluation metrics? Also, further training them on the legal corpus,
produces comparable results to the ones only trained on legal texts?

Figure 3.3 shows the general workflow for the second question. For this question we
compare the general-purpose resources, that is word embeddings trained on textual
data available from many different domains, with the word embeddings trained on
the legal corpus.

As the domain-specific word embeddings are created using legal domain-specific data
this word embedding will not be trained further. In case of general-purpose word
embeddings, two models will be trained - one with a frozen (embedding weights
will not be updated during the training process) embedding layer and other models
will train the word embeddings. This is done to see if further training the general-
purpose word embeddings produces results comparable to the ones trained on legal
data.

3.3. Phase 3: Model Architecture and Training 41

Figure 3.3: Flow chart representing the workflow for the second
research question

Evaluation

Similar to the first question, the classification models are trained on sentences for
the English and German corpora, hence all the models are evaluated on document
level and sentence level with micro-average precision, recall and f1-score performance
matrices as micro-average scores gives a better insight on how the classifier performs
on minority classes. All the classification models are trained on clustered data in
the similar way as shown in the Figure 3.2. As the training is done on the clustered
data, the scores of the performance matrices are averaged together similar to the
evaluation done in research question 1 (see Section 3.3.1).

42 3. Concept

The Table 3.6 below lists all the classification algorithms for the second research
question,

Classification
Algo-
rithm

Word
Embeddings

Embedding
Training

Corpus
Type of
Training

Evaluation
Strategy

BiLSTM

Domain-
Specific

Bilingual (Legal
Text)

False
English

and
German

Clustered

Document
Level and
Sentence

Level

BiLSTM

General-
Purpose
Bilingual

(Facebook’s
MUSE)

False
English

and
German

Clustered

Document
Level and
Sentence

Level

BiLSTM

General-
Purpose
Bilingual

(Facebook’s
MUSE)

True
English

and
German

Clustered

Document
Level and
Sentence

Level

Table 3.6: Classification algorithms for the second research question
with their corresponding text representation techniques, the corpus

used to train them, the type of training (clustered or non clustered) and
the evaluation strategies

3.3.3 Research Question 3:

The third research question is:

Can BiLSTM perform better when training multiple languages in a single
model, compared to training one model for each language separately?

Figure 3.4 shows the general workflow for the third research question. In this ques-
tion, we explore the possible effects of having data in multiple languages on a clas-
sifier. C.-P. Wei et al.[WYL+14] suggest that when the training set for a single
language is small it is less representative of the target semantic space and a classifier
trained on this data set may not yield satisfactory results. However, if the text from
another language is available for the predefined category then it can be beneficial
and can improve the effectiveness of the classifier for the respective language. The
näıve approaches of handling such data is to build separate classifiers for separate
languages. This näıve method does not take the benefit of the availability of data
across different language for a defined category.

To see the effect of the advantage of multilingual data, in this research question, first,
two separate classifiers are trained on two different languages; namely, English and

3.3. Phase 3: Model Architecture and Training 43

German. The results from both of them are combined to get the average performance
(we will average the micro-average precision, recall, and f-score across both the
models to get the relative performance of the classifier on both the language) of
classification of these two classifiers. The training and evaluation of these classifiers
is similar to the training done in research question 1 and 2. This performance of
the two classifiers is then compared to a single classifier that is trained on both the
languages with multilingual word embeddings.

The training of all the classifiers for this question is done in a similar fashion as
shown in Figure 3.2, and Table 3.7 below lists all the classification algorithms for
the third research question,

Figure 3.4: Flow chart representing the workflow for the third research
question.

44 3. Concept

Evaluation

For the evaluation, the multilingual classifier is evaluated on the summation of pre-
dictions from the sentences of each document for each class. Also, both of the
monolingual classifiers are evaluated on the summation of the predictions from the
sentences of each document of each class but these results are then averaged to be
able to compare them with the multilingual classifier.

Classification
Algorithm

Word
Embeddings

Corpus
Type of
training

Evaluation
Strategy

BiLSTM

Monolingual
Domain-

Specific (Legal
Text)

English
Non

Clustered

Document
Level &
Sentence

Level

BiLSTM

Monolingual
Domain-

Specific (Legal
Text)

German
Non

Clustered

Document
Level &
Sentence

Level

BiLSTM

Bilingual
Domain-

Specific (Legal
Text)

English
and

German

Non
Clustered

Document
Level &
Sentence

Level

Table 3.7: Classification algorithms for the third research question with
their corresponding text representation techniques, the corpus used to
train them, the type of training (clustered or non clustered) and the

evaluation strategies.

4. Implementation

This chapter describes in detail how the data is collected, which preprocessing tech-
niques are applied to the data in order to make it fit for the machine learning
algorithm to learn, how data is resampled, how it is clustered and what the details
are of the architecture of the models and which evaluation strategies are applied.
This chapter also contains detail about all the tools and libraries that are used for
completing the above-mentioned tasks.

4.1 Data Collection
To begin with the implementation, the first step is to obtain the data. Obtaining
the data is particularly challenging as these summaries are frequently changing, so
scraping the data at different times may result in the different assignment of a single
document in different categories. Also, another challenge is that when documents
for English and German are scraped separately, it happens quite often that some
of the documents from one of the language are missing. Due to these challenges, a
carefully crafted scraper which scrapes the data only if the documents from both of
the languages are available is used. This, in turn, added a time overhead.

For scraping the data, the Python library urllib1 is used, this library scrapes the
HTML data out of the desired web pages. Then Python library Beautiful Soup2

is used on the data collected from the web pages to parse the HTML content and
produce a simple text document. During the parsing of the data, the corresponding
label of the document is also parsed in order to complete the training dataset. First,
the title of the document is scraped. Then all the HTML elements of the web page
are removed to construct the text document. A new folder with the name of the
category that is the label of the document is then used to store the documents of
that class, and each document is given the corresponding title as the name of the
file.

The EUR-Lex data set is an imbalanced dataset. That is the number of instances
across the classes is not even as shown in Figure 4.1.

1https://docs.python.org/3/library/urllib.html
2https://www.crummy.com/software/BeautifulSoup/bs4/doc/

46 4. Implementation

A
gr

ic
u
lt

u
re

A
u
d
io

v
is

u
al

an
d

M
ed

ia
B

u
d
ge

t
C

om
p

et
it

io
n

C
on

su
m

er
s

C
u
lt

u
re

C
u
st

om
s

D
ev

el
op

m
en

t
E

co
n
om

ic
an

d
M

on
et

ar
y

A
ff

ai
rs

E
d
u
ca

ti
on

T
ra

in
in

g
Y

ou
th

E
m

p
lo

y
m

en
t

an
d

S
o
ci

al
P

ol
ic

y
E

n
er

gy
E

n
la

rg
em

en
t

E
n
te

rp
ri

se
E

n
v
ir

on
m

en
t

E
x
te

rn
al

R
el

at
io

n
s

E
x
te

rn
al

T
ra

d
e

F
ig

h
t

A
ga

in
st

F
ra

u
d

F
o
o
d

S
af

et
y

F
or

ei
gn

an
d

S
ec

u
ri

ty
P

ol
ic

y
H

u
m

an
R

ig
h
ts

H
u
m

an
it

ar
ia

n
A

id
In

fo
rm

at
io

n
S
o
ci

et
y

In
st

it
u
ti

on
al

A
ff

ai
rs

In
te

rn
al

M
ar

ke
t

J
u
st

ic
e

F
re

ed
om

S
ec

u
ri

ty
M

ar
it

im
e

A
ff

ai
rs

an
d

F
is

h
er

ie
s

P
u
b
li
c

H
ea

lt
h

R
eg

io
n
al

P
ol

ic
y

R
es

ea
rc

h
In

n
ov

at
io

n
T

ax
at

io
n

T
ra

n
sp

or
t0

100

200

300

400

500

600

11
6

23 25
49

15
3

21
42

96
16

0
11

7
28

3
98

77
58

27
4

84
63 49

16
9

54
31 43

17
0

14
1

46
5

34
6

10
3

52 61 61
39

20
1

n
u
m

b
er

of
sa

m
p
le

s
Number of samples

Figure 4.1: Document Distribution of EUR-Lex summaries

4.2 Data Cleaning

The preprocessing involves removing of punctuation, numbers, currency symbols as
they do not contribute anything in the classification process. Then the next step is
to normalize the text, and this step is necessary because of the inflection added due
to the modification of words. Lemmatization is used here to normalize the text. As
the last step, stop words from both the languages are removed because, they also do
not contribute anything, and they increase the training time of the algorithm. For
the German language, umlauts - ä, ö and ü are converted into their base form that
is ä to ae, ö to oe and ü to ue. There were other Unicode characters which were
also removed.

Following are the steps in which the preprocessing is done.

1. As a first step, stop words are removed.

2. The next step is to lemmatize the words.

4.3. Clustering 47

3. In the next step other unnecessary symbols are removed. For example, § is the
symbol of a paragraph and is extensively used in the legal text. The symbol •
is also another example.

4. In this step numbers and punctuation are removed.

5. Conversion of umlauts to its base form.

The order of the steps is also essential as it will help in reducing the overload on
some of the processes. For example, when the stop words are removed in the first
step, then the lemmatizer would not have to go through those words, and that will
decrease the time taken to process the text.

For removing the stop words the Python library NLTK 3 (Natural Language Toolkit)
is used. It provides stop words in both English and German language. To lemmatize
the words the spaCy4 library is used for both the languages. To remove unnecessary
symbols, custom functions are written. Number removal and conversion of umlauts
were also done using custom functions.

4.3 Clustering

To cluster the data using the K-means algorithm, first, the value of k is obtained us-
ing the Silhouette score (see Section 2.4.2.1) and Elbow Analysis (see Section 2.4.2.2).

Silhouette score and elbow analysis is computed using the scikit-learn5 library. First
the documents from English corpus are converted into TF-IDF vectors using the
scikit-learn library. These TF-IDF vectors are then used for training 8 k-means
cluster which produces the cluster assignments for each value of k. The value 8
is heuristic as having more than 8 clusters would not be feasible in the context of
the amount of resources required for training the classifiers for these clusters and
also, dividing data into more than 8 clusters would leave less data for classification
in those clusters. The cluster assignments are then used along with the TF-IDF
matrix to find the silhouette score. The highest value of the silhouette score means
better the assignment of the clusters (see Section 2.4.2.1)

The values of the silhouette score obtained for EUR-Lex summaries are listed below
in the Table 4.1

And the elbow analysis for the same is shown in the Figure 4.2, which indicates that
the data should be divided into 2 clusters. The silhouette score is high at 2 clusters,
that means that other values of k will not model the data significantly better.

After obtaining the value of k = 2 for the number of clusters, the next step is to
apply constrained k-means clustering, for this an open source implementation of
constrained k-means is used here called as COP-Kmeans6 [Bab17].

3https://www.nltk.org/
4https://spacy.io/
5https://scikit-learn.org/stable/
6https://github.com/Behrouz-Babaki/COP-Kmeans

48 4. Implementation

k Silhoutte score
2 0.05693
3 0.04417
4 0.04749
5 0.05515
6 0.05480
7 0.05647
8 0.05537

Table 4.1: Silhouette scores for 8 values of k

Figure 4.2: Elbow analysis validating the value of k at 2

The COP-Kmeans requires the dataset (TF-IDF matrix of the corpus), the value of
k, and two lists of constraints (must-link and cannot-link). As mentioned already, no
prior information is available for the cannot-link constraints; hence, only must-link
constraints are applied.

The Table 4.2 shows the cluster assignments of all the 32 categories of the EUR-Lex
summaries obtained after applying COP-K-means with k = 2.

4.3. Clustering 49

Class Label Cluster Assignment
Agriculture 1

Audiovisual and Media 1
Budget 2

Competition 1
Consumers 1

Culture 2
Customs 2

Development 2
Economic and Monetary Affairs 2

Education Training Youth 2
Employment and Social Policy 1

Energy 1
Enlargement 2
Enterprise 1

Environment 1
External Relations 2

External Trade 2
Fight Against Fraud 2

Food Safety 1
Foreign and Security Policy 2

Human Rights 2
Humanitarian Aid 2

Information Society 1
Institutional Affairs 2

Internal Market 1
Justice Freedom Security 2

Maritime Affairs and Fisheries 2
Public Health 1

Regional Policy 2
Research Innovation 2

Taxation 1
Transport 1

Table 4.2: Assignment of EUR-Lex summaries into clusters

50 4. Implementation

4.4 Data Resampling

The method behind the resampling of the dataset is to loop over the dataset one by
one to find duplicate documents. When a duplicate document is found, we check the
labels of all the duplicate documents and compare the total number of samples in
all the labels for which the duplicate documents are found. We remove the duplicate
instance from the class containing the most number of samples. This method is time
consuming as the number of loops the algorithm goes through before finishing is n
x n where n is the number of documents.

To make the algorithm more efficient, first, the total number of samples is counted.
Then, a list of non-duplicate documents without the labels is created. The generated
list is then used to iterate over all the duplicate documents, by comparing every
document and storing the corresponding labels of the duplicate document. After
a single document from the non duplicated list completes iterating over all the
duplicate documents, the labels of the duplicated documents are checked for their
class distribution, and then the duplicated document is removed from the majority
class. Also, if a duplicate document is found in the same class, then only one is kept,
and the other is removed.

The pseudo code for the above-mentioned algorithm where x is a list of non du-
plicated documents. xd is the list with duplicated documents and yd contains the
corresponding labels for the xd as shown in Algorithm 1

Algorithm 1 Resampling Algorithm

1: for all labels L in yd do
2: dist← Counter(L)
3: end for
4: for i = 1 : count(x) do
5: xi ← x[i]
6: for j = 1 : count(xd, yd) do
7: xj ← xd[j]
8: yj ← yd[j]
9: if xi == xj then

10: tmp list← yj
11: end if
12: end for
13: if len(tmp list) == 1 then
14: `← tmp list
15: else
16: for k = 1 : count(tmp list) do
17: `← min(dist[temp list[k]])
18: end for
19: end if
20: xi → doc {Resampled document data}
21: `→ labels {Labels for the resampled document data}
22: end for

4.5. Training the Word Vectors 51

Table 4.3 shows the total number of documents in the original dataset and the
number of documents after the resampling technique is applied.

Category Original Resampled
Agriculture 116 90
Audiovisual and Media 23 18
Budget 25 25
Competition 49 47
Consumers 153 125
Culture 21 21
Customs 42 39
Development 96 63
Economic and Monetary Affairs 160 149
Education Training Youth 117 102
Employment and Social Policy 283 174
Energy 98 74
Enlargement 77 64
Enterprise 58 56
Environment 274 134
External Relations 84 59
External Trade 63 56
Fight Against Fraud 49 31
Food Safety 169 108
Foreign and Security Policy 54 49
Human Rights 31 35
Humanitarian Aid 43 30
Information Society 170 149
Institutional Affairs 141 128
Internal Market 465 234
Justice Freedom Security 346 223
Maritime Affairs and Fisheries 103 90
Public Health 52 52
Regional Policy 61 58
Research Innovation 61 55
Taxation 39 39
Transport 201 139

Table 4.3: Distribution of number of samples before and after
resampling

4.5 Training the Word Vectors

The model used in the creation of the word vectors is a neural network, and neural
networks are data hungry as it requires a lot of data to train them properly. As
a result, another domain-specific dataset is used in this experiment because the
data from the summaries used for classification is small. Hence, the whole EUR-
Lex dataset was used as it contains 19,348 documents mostly consisting regulations,
decisions and directives of European Union [LMF10].

52 4. Implementation

4.5.1 Training Cross Lingual Word Embedding

We are the technique suggested by Duong et. al [DKM+16] (see Section 2.9.3)
to train bilingual domain-specific word embeddings. The dataset used for training
the domain-specific word embeddings is the EUR-Lex dataset, as the dataset used
for classification (EUR-Lex summaries) is less compared to the EUR Lex dataset.
For creating a bilingual dictionary, the EuroVoc thesaurus [SPH02] provided by
the Publication office of the European Union is used. It is available in 24 official
languages recognized by the European Union. This thesaurus is domain-specific
hence it does not involve common words that might occur in the documents. Due to
this reason, this thesaurus is combined with bilingual dictionaries that are available
from Facebook MUSE [CLR+17]. These bilingual dictionaries were created using
Facebook’s internal translation tools. The authors claim that these dictionaries
handle the polysemy of the words better then other bilingual dictonaries available.
This combined bilingual dictionary with the original EUR-Lex dataset is used to
create the legal domain-specific bilingual word embeddings.

Monolingual word embeddings for training BiLSTMs are trained using the Skip-
gram method with Fasttext7[GLF+09] tool. These embeddings were also trained on
the the EUR-Lex corpus. These monolingual word embeddings are in English and
German language and are in 300 dimensions.

For training general-purpose bilingual word embeddings we again Fasttext which
provides word embeddings in 157 languages trained on Wikipedia8 and Common
Crawl9 data using the Continuous bag-of-words model in 300 dimensions. The word
embeddings for multiple languages cannot be combined together because they belong
in different vector spaces. Facebook’s MUSE10 [CLR+17] with the help of parallel
dictionaries is used to align both word embeddings (English and German) into a sin-
gle vector space. Upon alignment, both the embeddings can be simply concatenated
and can be used for classification purpose. These word embeddings are created from
various sources, it contains text from various domains and hence they are being used
as general-purpose word embeddings.

4.6 Architecture and Training

This section describes in detail the specifics of the architectures of the algorithms
used for all the three questions mentioned in Section 3.3.

Before beginning to train the models, it is necessary to divide the dataset into a
training set and a testing set. Generally, 70% of the data is for training purposes,
and 30% to evaluate the model. This division is stratified, which means that the
class distribution in training and testing set will remain almost equal. The stratified
division ensures that there are enough examples for each class in training, and test
phase of the model.

7https://fasttext.cc/docs/en/cr awl-vectors.html
8https://www.wikipedia.org/
9http://commoncrawl.org/

10https://github.com/facebookresearch/MUSE

4.6. Architecture and Training 53

Neural network-based classification models are prone to overfitting [Pre98]. An
overfitted model will perform well on the training data but fail to perform well on
the testing data. To put it simply, while training the error on the training set will
keep on decreasing with, the error on the unseen data starts getting worse. To avoid
this situation regularization techniques such as Dropout, L1 and L2 regularization
and early stopping are used.

Dropout and L1, L2 regularization are explicit regularization techniques, that is
they explicitly reduce the model complexity. In Dropout regularization techniques,
during the training, a fraction of randomly selected neurons are ignored. Hence, their
activation contribution to the forward pass and weight updates are removed. While
Dropout regularization reduces the model complexity by removing randomly selected
neurons during training, L1 and L2 regularization reduce the model complexity by
imposing a penalty to the weight of all the features and features with non zero
weights respectively.

On the other hand, the early stopping regularization is implicit which does not
affect the complexity of the model directly [ZBH+16]. Early stopping monitors the
training process and halts it once the performance of the model starts degrading. It
does so by monitoring the performance of the classifier on the validation data.

Dropout, L1 - L2 regularization, and early stopping can be configured in keras while
building the model. During the training, we split 30% of training data for validation
purpose so that there is no need for splitting validation data at the time when we
split the dataset into training and testing set.

4.6.1 First Research Question

In the first research question SVMs are compared to BiLSTMs. When using an
SVM algorithm, we do not know beforehand the value of C. To find that out, we
need some kind of selection mechanism. The aim is to find out the value of C such
that it can predict accurately on unknown data. One method of finding the value of
C is called Grid Search Cross Validation (Grid Search CV). This method is straight
forward; first, we select the number of values of C, then we divide the training set
into n equal-sized subsets. Then we train the SVM using one value from C on the
n − 1 subset and predict on the one left subset, we repeat this process until every
instance of the training set is predicted once for every value of C.

This process is computationally expensive as each subset will be trained on every
value of C. We used the following values of C (0.001,0.01, 0.1,1,10,100).

To train the SVM, a TF-IDF matrix of the English corpus is created using the
scikit-learn python library and then this TF-IDF matrix is used to train a linear
SVM from the same scikit-learn library.

The SVM is compared against two BiLSTM models, one without clustered data
on single language (English) and one with clustered data (English and German).
The technique used for training both SVM and BiLSTM is different, while SVM is
trained on whole documents, BiLSTMs are trained on sentences created using the
sliding window technique (see Section 2.11, Section 3.3.1). The Figure 4.3 shows the

54 4. Implementation

architecture of the BiLSTM model trained on English corpus with all the 32 classes.
The BiLSTM models are created using the Keras11 Python library.

The hyperparameters for the BiLSTM trained on the English corpus without clus-
tered data is listed in Table 4.4.

Hyperparameter Value
Sentence Size 30 words

Batch Size 32
Embedding Dimension 200

Hidden 1 Size 40
Hidden 2 Size 40

Dropout 1 0.5
Dropout 2 0.5

l2 regularization 1 0.04
l2 regularization 2 0.01

Learning Rate 0.001

Table 4.4: Hyperparameter of BiLSTM for training English language
corpus without clustered data

Figure 4.3: Architecture of BiLSTM for training English language
corpus without clustered data

11https://keras.io/

4.6. Architecture and Training 55

The hyperparameters for training the BiLSTMs on clustered data are exactly the
same to the one without clustered data trained on English language Table 4.4.

The architecture for the BiLSTM trained on cluster 1 and cluster 2 data is shown
in Figure 4.4.

Figure 4.4: Architecture of BiLSTM for training English and German
language corpus on cluster 1 and cluster 2 data.

56 4. Implementation

4.6.2 Second Research Question

In the second question general-purpose embeddings are compared to word embed-
dings created using the EUR-Lex corpus (see Section 4.5.1).

Both the approaches using the general-purpose resource and the domain-specific
resources, use a BiLSTMs trained on clustered data to see the effect of clustering,
similar to the BiLSTMs in Section 4.6.1 The hyperparameters for both approaches is
listed in Table 4.5 for general-purpose embeddings and Table 4.6 for domain-specific
embeddings.

Hyperparameter Value
Sentence Size 30 words

Batch Size 32
Embedding Dimension 300

Hidden 1 Size 40
Hidden 2 Size 40

Dropout 1 0.5
Dropout 2 0.5

l2 regularization 1 0.04
l2 regularization 2 0.01

Learning Rate 0.001

Table 4.5: Hyperparameters of the BiLSTM for training on English and
German language with clustered data using general-purpose word

embeddings created using Facebook’s MUSE python library

Hyperparameter Value
Sentence Size 30 words

Batch Size 32
Embedding Dimension 200

Hidden 1 Size 40
Hidden 2 Size 40

Dropout 1 0.5
Dropout 2 0.5

l2 regularization 1 0.04
l2 regularization 2 0.01

Learning Rate 0.001

Table 4.6: Hyperparameter of the BiLSTM for training on English and
German language with clustered data using domain-specific word

embeddings created from EUR-Lex dataset

The only difference between the training parameters of both the approaches are the
embedding dimensions; the general-purpose embedding is in 300 dimensions whereas
the domain-specific embedding is in 200 dimensions. The reason for this difference is
that aligning two embeddings in a single vector space is a computationally inexpen-
sive task, then learning the embedding from scratch for two languages. Decreasing

4.6. Architecture and Training 57

the dimensions will result in the reduction of training time, and hence the dimension
of domain-specific word embeddings are 100 less than general-purpose embeddings.

The architecture for the BiLSTM trained using general-purpose and domain-specific
word embeddings is shown in Figure 4.5

Figure 4.5: Architecture of the BiLSTM for training on an English and
German language corpus on clustered data using general-purpose word

embeddings aligned using Facebook’s MUSE.

58 4. Implementation

Figure 4.6: Architecture of the BiLSTM for training on an English and
German language on clustered data using domain specific embeddings

trained on the EUR-Lex dataset.

For evaluating the predictions, each document is divided into sentences using the
same sliding window technique used to create the training data, then predictions are
stored for every sentence of a document, and the predictions are summed up, and
the class with the highest value is considered the predicted class of the document.

4.6.3 Third Research Question

The third question evaluates the capability of training multiple languages in a single
BiLSTM model compared to training different models for different languages. For
this purpose two models, one for the English and another for the German language
will be compared to a single model trained on both the English and the German
language together.

The hyperparameters and architecture for all the models are the same to ensure a
fair comparison. The hyperparameters are for this question listed in Table 4.7 and
the architecture for this question is shown in Figure 4.7.

4.6. Architecture and Training 59

Hyperparameter Value
Sentence Size 30 words

Batch Size 32
Embedding Dimension 200

Hidden 1 Size 40
Hidden 2 Size 40

Dropout 1 0.5
Dropout 2 0.5

l2 regularization 1 0.04
l2 regularization 2 0.03

Learning Rate 0.001

Table 4.7: Hyperparameters of the BiLSTM for training on the English
and the German language without clustered data and trained on both

languages separately and together.

Figure 4.7: Architecture of the BiLSTM for training on the English and
the German language without clustered data and trained on both

languages together and separately.

60 4. Implementation

5. Evaluation

Evaluating a classification algorithm also known as classification model is necessary
to find how competent the algorithm is on data it has never seen. The classification
model generates probabilities when predicting unobserved data.

5.1 Experimental Setup

Most of the experiments are carried out on Google Colab which is a free Google
service that provides Jupyter notebooks with Python environment that stores the
notebooks on Google Drive. It provides a GPU (Graphics Processing Unit) or TPU
(Tensor Processing Unit) and has pre-installed various popular machine learning and
deep learning frameworks. The exact detail of the system is listed in the Table 5.1.

Hardware Specifications
CPU 2vCPU Intel(R) Xeon(R) Processors @2.20Ghz
GPU 1xTesla K80 12GB(11.439GB Usable) GDDR5 VideoRAM
TPU Google’s custom developed application-specific integrated circuits
RAM 12GB
DISK 358.27 GB

Table 5.1: Hardware specification for the experimental setup

All the experiments are performed using Python 3 environment. Scikit-learn, an
open source machine learning library in Python is used here for data processing and
training the SVM. For the BiLSTMs, Keras an open source neural network library
written in Python is used with a Tensorflow backend.

The packages, their version numbers and the description of the packages are listed
below in Table 5.2

62 5. Evaluation

Package Name Version Number Description

scikit-learn 0.20.3

An open source machine learning
library for data mining and data

analysis.

keras 2.2.4

An open source neural network
library for fast prototyping, uses
likes of Tensorflow or Theano.

tensorflow 1.13.1

An open source software library
for numerical computation using

data flow graphs.

beautifulsoup4 4.6.3
A python library for parsing
HTML and XML documents.

matplotlib 3.0.3
A python library for plotting and

visualization.

nltk 3.2.5
A python library for statistical
Natural Language Processing.

seaborn 0.7.1
A python library for statistical

data visualization.

spacy 2.0.18

An open-source software library
for advanced Natural Language

Processing.

numpy 1.14.6

An python library for creating
and manipulating, large and
multiple dimensional arrays.

scipy 1.1.0
An python library for scientific

and technical computing.

Fasttext 0.2.0
An python library for training

word vectors.

MUSE NA
A library for aligning word

vectors into a single vector space.

XlingualEmb NA
A library for learning bilingual

word vectors.

Table 5.2: List of packages used

5.2 Evaluation Approach
For evaluation, initially 70% of data is used for training the classification models, and
then 30% of the data is used for evaluating it. The evaluation is done on sentence
level and on document level Section 3.3.1 using performance evaluation matrices de-
scribed in Section 2.12. The evaluation of each question will go in detail about the
performance of each classification model. Beside the described performance evalua-
tion matrices, as the dataset used for training is an imbalanced one, the evaluation

5.2. Evaluation Approach 63

will also go into the details about the performance of the classifiers on each class
in order to get better insights of how well it is performing for the underrepresented
classes (the minority classes).

5.2.1 Evaluation for the first research question

The first research question compares the performance of SVM and BiLSTM trained
on the English corpus. It also evaluates the classification performance of the BiLSTM
trained on unclustered bilingual corpora compared with the one trained on clustered
bilingual corpora.

Before training the SVM, we had to find the value of C, which we found to be 1
among all other values.

The Figure 5.1 shows the Micro-average and Figure 5.2 shows the Macro-average
performance of different classifiers evaluated on sentence and document level. The
results of the algorithm trained on clustered data are averaged together as mentioned
in Section 3.3.1

S
V

M
-D

-E

B
iL

S
T

M
-D

-E

B
iL

S
T

M
-S

-E

B
iL

S
T

M
-D

-E
D

-N

B
iL

S
T

M
-S

-E
D

-N

B
iL

S
T

M
-D

-E
D

-C

B
iL

S
T

M
-S

-E
D

-C

0

0.2

0.4

0.6

0.8

1

0.
81

0.
65

0.
4

0.
67

0.
44

0.
76

0.
5

0.
81

0.
65

0.
4

0.
67

0.
44

0.
76

0.
5

0.
81

0.
65

0.
4

0.
67

0.
44

0.
76

0.
5

M
ic

ro
-a

ve
ra

ge
va

lu
es

Precision Recall F1-Score

Figure 5.1: Micro-averaged Precision, Recall and F1-Score of SVM and
BiLSTM in different configurations. The first suffix D or S indicates
evaluation on document or sentence level respectively, the second suffix
E or D represents the language of the corpus used respectively. The third
suffix N or C indicates non clustered and clustered respectively.

Figure 5.1 shows that the performance of the SVM is better than BiLSTM when
trained only on English corpus on document level. The result of the same BiLSTM
when evaluated on a sentence level is less compared to when evaluated on document
level. The results on the sentence level are significantly lower compared to the results

64 5. Evaluation

S
V

M
-D

-E
-N

B
iL

S
T

M
-D

-E
-N

B
iL

S
T

M
-S

-E
-N

B
iL

S
T

M
-D

-E
D

-N

B
iL

S
T

M
-S

-E
D

-N

B
iL

S
T

M
-D

-E
D

-C

B
iL

S
T

M
-S

-E
D

-C

0

0.2

0.4

0.6

0.8

1

0.
8

0.
55

0.
35

0.
7

0.
43

0.
81

0.
49

0.
76

0.
49

0.
34

0.
55

0.
36

0.
69

0.
47

0.
77

0.
47

0.
32

0.
58

0.
36

0.
71

0.
46

M
ac

ro
-a

ve
ra

ge
va

lu
es

Precision Recall F1-Score

Figure 5.2: Macro-averaged Precision, Recall and F1-Score of SVM and
BiLSTM in different configurations. The first suffix D or S indicates
evaluation on document or sentence level respectively, the second suffix
E or D represents the language of the corpus used respectively. The third
suffix N or C indicates non clustered and clustered respectively.

on the document level. This behavior can be further explained by considering an
example document which is categorized in class A and contains three sentences. As
described in the Section 2.11 all the three sentences of this document will have the
same class as the document.

Sentence
Identifier

Prediction
Score of each
class, [Class
A, Class B]

True class
Predicted

class

Sentence I [0.9, 0.1] A A

Sentence II [0.49, 0.51] A B

Sentence III [0.45, 0.55] A B

Summation of
prediction score

for the whole
document

(normalized)

[0.62 , 0.38] A A

Table 5.3: Document with three sentences, prediction score for each class,
true class and predicted class

5.2. Evaluation Approach 65

From the Table 5.3, we can see that the predicted score of Sentence I for class A is
0.9 and for class B is 0.1, hence it is predicted in class A but for Sentence B and
Sentence C although they belong to class A they are predicted in class B since the
classifier was uncertain about the decision. However, when we combine the predicted
score for all the classes from all the sentences and normalize them, the overall score
for the document is higher for class A, so the precision of the above classifier on
sentence level will be 1

3
= 0.33 and on document level the precision is 1

1
= 1 and

therefore when evaluating on document level, the performance matrices are better.

The Table 5.4 shows the class-wise precision, recall and F1-Score values for BiLSTM
trained on English and German corpus with clustering and without clustering.

The effect of clustering is also evident from Figure 5.1 and Figure 5.2. The spe-
cialization advantage of clustering improves the classification performance on the
document level as well as on the sentence level. Also, we can see that the micro-
average f1-score for non clustered data in BiLSTM on the bilingual corpus is higher
than macro-average values, this indicates that the performance of the classifier on
minority classes on clustered data is better than non clustered data. This can be
confirmed by looking at the class-wise precision, recall and f1-score values in the Ta-
ble 5.4 for class Audiovisual and Media and Culture which has 18 and 21 instances,
respectively (see Table 4.3).

The micro-average values for precision, recall and f1-score in Figure 5.1 are the same
for each classifier. Hence, the calculation of the micro-average precision, recall and
f1-score for BiLSTM-D-ED-C cluster 1 is done in Section A.2 to confirm that it is
indeed the same.

66 5. Evaluation

Category PLSTM RLSTM FLSTM PLSTM-C RLSTM-CFLSTM-C

Agriculture 0.74 0.78 0.76 0.90 0.86 0.88
Audiovisual and Media 0.00 0.00 0.00 1.00 0.10 0.18
Budget 0.90 0.45 0.60 0.78 0.70 0.74
Competition 0.90 0.63 0.75 0.96 0.83 0.89
Consumers 0.54 0.54 0.54 0.59 0.65 0.62
Culture 0.00 0.00 0.00 0.93 1.00 0.97
Customs 0.78 0.47 0.58 0.64 0.70 0.67
Development 0.45 0.81 0.57 0.64 0.83 0.72
Economic and Monetary Affairs 0.85 0.93 0.89 0.95 0.87 0.91
Education Training Youth 0.64 0.94 0.77 0.86 0.94 0.90
Employment and Social Policy 0.68 0.83 0.75 0.71 0.88 0.79
Energy 0.71 0.71 0.71 0.97 0.64 0.77
Enlargement 0.70 0.44 0.54 0.76 0.59 0.67
Enterprise 0.44 0.15 0.23 0.65 0.42 0.51
Environment 0.69 0.82 0.75 0.70 0.84 0.76
External Relations 1.00 0.23 0.37 0.92 0.55 0.69
External Trade 0.53 0.61 0.57 0.61 0.71 0.66
Fight Against Fraud 1.00 0.25 0.40 0.53 0.50 0.52
Food Safety 0.90 0.82 0.86 0.93 0.82 0.87
Foreign and Security Policy 0.65 0.54 0.59 0.62 0.83 0.71
Human Rights 1.00 0.12 0.22 0.59 0.71 0.64
Humanitarian Aid 1.00 0.29 0.44 0.67 0.57 0.62
Information Society 0.54 0.72 0.62 0.71 0.84 0.77
Institutional Affairs 0.62 0.60 0.61 0.67 0.65 0.66
Internal Market 0.62 0.70 0.66 0.72 0.75 0.74
Justice Freedom Security 0.53 0.86 0.66 0.81 0.67 0.74
Maritime Affairs and Fisheries 0.91 0.80 0.85 0.94 0.91 0.92
Public Health 1.00 0.39 0.56 0.86 0.43 0.58
Regional Policy 0.88 0.50 0.64 0.72 0.86 0.78
Research Innovation 0.71 0.43 0.53 0.60 0.96 0.74
Taxation 0.94 0.54 0.68 0.95 0.71 0.82
Transport 0.67 0.81 0.73 0.76 0.86 0.81

Table 5.4: Class-wise precision (P) and recall (R) and F1-Score (F) for
the BiLSTM (denoted as LSTM for readability) trained on English and
German corpus evaluated on document level. The suffix C indicates the
results for clustered data. The best precision, recall and f1-scores among
both the classifiers is highlighted in blue, red and green respectively. If
the values across both the classifiers are same it not highlighted.

5.2. Evaluation Approach 67

5.2.2 Evaluation for the second research question

In the second research question the effects of general-purpose resources such as word
embeddings for the classification of the legal domain-specific task are investigated.
All the classification models are trained on English and German Corpora with clus-
tering.

The Figure 5.3 show the micro-average precision, recall, and f1-score values and
Figure 5.4 shows the macro-average precision, recall and f1-score values of different
hierarchical classifiers trained on English and German bilingual corpora and evalu-
ated on sentence and document level.

B
iL

S
T

M
-S

-D
-F

B
iL

S
T

M
-D

-D
-F

B
iL

S
T

M
-S

-G
-F

B
iL

S
T

M
-D

-G
-F

B
iL

S
T

M
-S

-G
-T

B
iL

S
T

M
-D

-G
-T

0

0.2

0.4

0.6

0.8

1

0.
5

0.
76

0.
17

0.
18

0.
52

0.
77

0.
5

0.
76

0.
17

0.
18

0.
52

0.
77

0.
5

0.
76

0.
17

0.
18

0.
52

0.
77

M
ic

ro
-a

ve
ra

ge
va

lu
es

Precision Recall F1-Score

Figure 5.3: Micro-average Precision, Recall and F1-Score of the BiL-
STM trained with general-purpose embeddings and domain-specific em-
beddings. The first suffix S or D indicates the evaluation on sentence or
document level, the second suffix D or G represents the domain-specific
or general-purpose word embeddings used in the models. The third suffix
F or T indicates the status of embedding training, F represents Frozen
and T stands for Trainable.

From Figure 5.3 and Figure 5.4 it is quite evident that domain-specific word embed-
dings perform notably better than the general-purpose word embeddings. BiLSTM-
D-ED-C-F is the model with a domain-specific embedding and has the embedding
layer frozen, which means that the embedding layer’s weights are not updated during
the training of the network. BiLSTM-G-ED-C-F is the model with frozen general-
purpose word embeddings, similar to the previous model; the weights of this model
are not updated. BiLSTM-G-ED-C-T is the model with trainable general-purpose
word embeddings, unlike the previous two models, in this model we allow the model

68 5. Evaluation

B
iL

S
T

M
-S

-D
-F

B
iL

S
T

M
-D

-D
-F

B
iL

S
T

M
-S

-G
-F

B
iL

S
T

M
-D

-G
-F

B
iL

S
T

M
-S

-G
-T

B
iL

S
T

M
-D

-G
-T

0

0.2

0.4

0.6

0.8

1

0.
49

0.
81

1
·1

0−
2

1
·1

0−
2

0.
47

0.
78

0.
46

0.
69

6
·1

0−
2

6.
5
·1

0−
2

0.
44

0.
67

0.
46

0.
71

2
·1

0−
2

2
·1

0−
2

0.
44

0.
7

M
ac

ro
-a

ve
ra

ge
va

lu
es

Precision Recall F1-Score

Figure 5.4: Macro-average Precision, Recall and F1-Score of BiLSTM
trained with general-purpose embeddings and domain-specific embed-
dings. The first suffix S or D indicates the evaluation on sentence or
document level, the second suffix D or G represents the domain-specific
or general-purpose word embeddings used in the models. The third suffix
F or T indicates the status of embedding training, F represents Frozen
and T stands for Trainable.

to update the weights of the embeddings. This was necessary to evaluate as the
general-purpose embeddings are trained on text from sources like Wikipedia or news
article, which are not as complex in style and structure compared to legal text. This
is the reason as to why it outperformeds the model whose embedding weights were
frozen.

The classification models BiLSTM-S-G-F and BiLSTM-D-G-F shown in Figure 5.3
and Figure 5.4 performed the worst. They overfitted on the data and did predicted
everything to a single class. One of the reasons for this performance could be that
the embedding matrix was never updated. As mentioned above that the general-
purpose word embeddings use a free text corpus such as Wikipedia and News articles,
which contains information about multiple domains. Hence, when these embeddings
were trained on Wikipedia and the News article corpus, the semantics captured are
different from the ones that are specifically trained on the legal corpus. One example
of this can be seen in an Image Recognition task when applying transfer learning;
it is advisable that the dataset for prediction or classification task being performed
should be similar to the ones we are doing transfer learning from [IS18].

Another reason is that general-purpose word embeddings do not contain specialized
words that are used in the legal domain. The EUR-lex summaries of English and

5.2. Evaluation Approach 69

German corpus for cluster 1 data contain 43339 words and when the embedding ma-
trix is created only 20310 words are found in the general-purpose embedding. That
is only half of the words. So training the general-purpose embeddings is necessary
to get better performance which can be seen from the Figure 5.4.

The visualization randomly selected 10 words of general-purpose embeddings before
training (which is the visualization of frozen word embeddings) and after training
(which is a visualization of trained word embeddings) is in Section A.3.

The results are comparable. The Table 5.5 shows in detail the class-wise precision,
recall, and f1-score of BiLSTM trained on English and German corpus with the
general-purpose word embeddings and on the domain-specific word embeddings.

As we can see from the Table 5.5 the performance of domain-specific word embed-
dings is better in general compared to the general-purpose embeddings. For the
class Audiovisual and Media, general-purpose embeddings do not classify a single
document.

70 5. Evaluation

Category PLSTM-D RLSTM-D FLSTM-D PLSTM-G RLSTM-G FLSTM-C

Agriculture 0.90 0.86 0.88 0.82 0.80 0.81
Audiovisual and Media 1.00 0.10 0.18 0.00 0.00 0.00
Budget 0.78 0.70 0.74 0.67 0.20 0.31
Competition 0.96 0.83 0.89 0.89 0.83 0.86
Consumers 0.59 0.65 0.62 0.65 0.65 0.65
Culture 0.93 1.00 0.97 1.00 0.50 0.67
Customs 0.64 0.70 0.67 0.94 0.53 0.68
Development 0.64 0.83 0.72 0.64 0.81 0.72
Economic and Monetary Affairs 0.95 0.87 0.91 0.90 0.95 0.93
Education Training Youth 0.86 0.94 0.90 0.91 0.94 0.92
Employment and Social Policy 0.71 0.88 0.79 0.71 0.86 0.78
Energy 0.97 0.64 0.77 0.98 0.71 0.82
Enlargement 0.76 0.59 0.67 0.65 0.62 0.63
Enterprise 0.65 0.42 0.51 0.64 0.35 0.45
Environment 0.70 0.84 0.76 0.80 0.89 0.84
External Relations 0.92 0.55 0.69 0.68 0.59 0.63
External Trade 0.61 0.71 0.66 0.72 0.46 0.57
Fight Against Fraud 0.53 0.50 0.52 0.83 0.31 0.45
Food Safety 0.93 0.82 0.87 0.84 0.87 0.85
Foreign and Security Policy 0.62 0.83 0.71 0.79 0.62 0.70
Human Rights 0.59 0.71 0.64 0.89 0.33 0.48
Humanitarian Aid 0.67 0.57 0.62 1.00 0.57 0.73
Information Society 0.71 0.84 0.77 0.76 0.90 0.82
Institutional Affairs 0.67 0.65 0.66 0.55 0.80 0.65
Internal Market 0.72 0.75 0.74 0.74 0.80 0.77
Justice Freedom Security 0.81 0.67 0.74 0.69 0.89 0.78
Maritime Affairs and Fisheries 0.94 0.91 0.92 0.87 0.89 0.88
Public Health 0.86 0.43 0.58 0.92 0.52 0.67
Regional Policy 0.72 0.86 0.78 0.81 0.90 0.85
Research Innovation 0.60 0.96 0.74 0.79 0.79 0.79
Taxation 0.95 0.71 0.82 0.95 0.64 0.77
Transport 0.76 0.86 0.81 0.82 0.89 0.85

Table 5.5: Class-wise precision (P) and recall (R) and F1-Score (F) for
BiLSTM-D-ED-C-T (represented with suffix LSTM-D) and BiLSTM-D-
ED-C-T (represented with suffix LSTM-G) on evaluated on the document
level. The best precision, recall and f1-scores among both the classifiers
are highlighted in blue, red and green respectively. If the values across
both the classifiers are the same they are not highlighted.

5.2. Evaluation Approach 71

5.2.3 Evaluation for third research question

The third research question investigates the effect of having a multilingual parallel
corpus on the classification task. A multilingual parallel corpus here means having
different language documents for a predefined category.

As described in Figure 3.3 two BiLSTMs classification models, one trained with
the English corpus and other trained with the German corpus are compared with a
single BiLSTM classification model trained on an English and German corpus.

B
iL

S
T

M
-S

-E
-N

B
iL

S
T

M
-D

-E
-N

B
iL

S
T

M
-S

-D
-N

B
iL

S
T

M
-D

-D
-N

A
V

G
-B

iL
S
T

M
-S

-E
D

-N

A
V

G
-B

iL
S
T

M
-D

-E
D

-N

B
iL

S
T

M
-S

-E
D

-N

B
iL

S
T

M
-D

-E
D

-N

0

0.2

0.4

0.6

0.8

1

0.
4

0.
65

0.
36

0.
65

0.
38

0.
65

0.
44

0.
67

0.
4

0.
65

0.
36

0.
65

0.
38

0.
65

0.
44

0.
67

0.
4

0.
65

0.
36

0.
65

0.
38

0.
65

0.
44

0.
67

M
ic

ro
-a

ve
ra

ge
va

lu
es

Precision Recall F1-Score

Figure 5.5: Micro-average Precision, Recall and F1-Score for the BiL-
STM. The first suffix specifies the method of evaluation (S = Sentence
and D = Document), the suffix second E, D or ED specifies the lan-
guage of the corpus, English, German or both English and German re-
spectively. The second suffix N represents that model is trained on non
clustered data. AVG-BiLSTM-ED-N represents the average score from
BiLSTM-E-N and BiLSTM-D-N

Figure 5.5 shows the micro-average precision, recall, and f1-scores indicate that em-
ploying a single classifier for the bilingual corpus is slightly better than two different
classifiers for two different languages. Figure 5.6 also confirms the above mentioned
statement. One explanation for the better performance of the bilingual classifier
is that it has more examples to learn from than the previous case. C.-P. Wei et
al. showed that polylingual data could be used to increase the performance of a
classifier [WYL+14].

72 5. Evaluation

B
iL

S
T

M
-S

-E
-N

B
iL

S
T

M
-D

-E
-N

B
iL

S
T

M
-S

-D
-N

B
iL

S
T

M
-D

-D
-N

A
V

G
-B

iL
S
T

M
-S

-E
D

-N

A
V

G
-B

iL
S
T

M
-D

-E
D

-N

B
iL

S
T

M
-S

-E
D

-N

B
iL

S
T

M
-D

-E
D

-N

0

0.2

0.4

0.6

0.8

1

0.
34

0.
61

0.
32

0.
6

0.
33

0.
61

0.
43

0.
7

0.
33

0.
55

0.
28

0.
54

0.
31

0.
55

0.
36

0.
55

0.
33

0.
55

0.
28

0.
55

0.
31

0.
55

0.
36

0.
58

M
ac

ro
-a

ve
ra

ge
va

lu
es

Precision Recall F1-Score

Figure 5.6: Macro-average Precision, Recall and F1-Score for BiLSTM.
The first suffix specifies the method of evaluation (S = Sentence and D
= Document), the suffix second E, D or ED specifies the language of the
corpus, English, German or both English and German respectively. The
second suffix N represents that model is trained on non clustered data.
AVG-BiLSTM-ED-N represents the average score of BiLSTM-E-N and
BiLSTM-D-N

The class-wise precision, recall, and f1-scores of classifiers AVG-BiLSTM-ED-N and
BiLSTM-ED-C are shown in Table 5.6

The effects of having multiple languages for training are clear from the Table 5.6. For
classes Budget the classifier with a single language in training did not predict a single
sample during testing. However, when another language is added to the training
data, classification shows signs of improvement. The improvement is significant in
case of class Budget when for a classifier with a single language the precision, recall
and f1-score was 0.00 and for bilingual classifier the precision, recall, and f1-score is
0.90, 0.45 and 0.60, respectively. However, for the class Culture this is opposite, the
bilingual classifier was unable to predict any sample from that class whereas on the
other hand the monolingual classifiers did classify with precision, recall and f-score
values of 0.57, 0.62, 0.60.

5.2. Evaluation Approach 73

Category PLSTM-A RLSTM-A FLSTM-A PLSTM-B RLSTM-B FLSTM-B

Agriculture 0.65 0.82 0.72 0.74 0.78 0.76
Audiovisual and Media 0.00 0.00 0.00 0.00 0.00 0.00
Budget 0.00 0.00 0.00 0.90 0.45 0.60
Competition 0.50 0.16 0.25 0.90 0.63 0.75
Consumers 0.57 0.62 0.60 0.54 0.54 0.54
Culture 0.61 0.57 0.53 0.00 0.00 0.00
Customs 0.68 0.05 0.58 0.78 0.47 0.58
Development 0.60 0.77 0.67 0.45 0.81 0.57
Economic and Monetary Affairs 0.91 0.93 0.92 0.85 0.93 0.89
Education Training Youth 0.77 0.88 0.82 0.64 0.94 0.77
Employment and Social Policy 0.62 0.78 0.69 0.68 0.83 0.75
Energy 0.76 0.61 0.67 0.71 0.71 0.71
Enlargement 0.53 0.53 0.53 0.70 0.44 0.54
Enterprise 0.19 0.23 0.20 0.44 0.15 0.23
Environment 0.62 0.80 0.70 0.69 0.82 0.75
External Relations 0.73 0.36 0.48 1.00 0.23 0.37
External Trade 0.47 0.64 0.53 0.53 0.61 0.57
Fight Against Fraud 0.40 0.25 0.31 1.00 0.25 0.40
Food Safety 0.95 0.75 0.85 0.90 0.82 0.86
Foreign and Security Policy 0.57 0.50 0.53 0.65 0.54 0.59
Human Rights 1.00 0.25 0.39 1.00 0.12 0.22
Humanitarian Aid 1.00 0.36 0.52 1.00 0.29 0.44
Information Society 0.62 0.68 0.65 0.54 0.72 0.62
Institutional Affairs 0.48 0.70 0.56 0.62 0.60 0.61
Internal Market 0.69 0.65 0.67 0.62 0.70 0.66
Justice Freedom Security 0.61 0.85 0.71 0.53 0.86 0.66
Maritime Affairs and Fisheries 0.84 0.81 0.82 0.91 0.80 0.85
Public Health 0.37 0.13 0.20 1.00 0.39 0.56
Regional Policy 0.62 0.55 0.57 0.88 0.50 0.64
Research Innovation 0.46 0.43 0.44 0.71 0.43 0.53
Taxation 0.85 0.57 0.65 0.94 0.54 0.68
Transport 0.65 0.71 0.68 0.67 0.81 0.73

Table 5.6: Class-wise precision (P) and recall (R) and F1-Score (F) for
AVG-BiLSTM-ED-N (represented with suffix LSTM-A) and BiLSTM-
ED-N (represented with suffix LSTM-B) on evaluated on document level.
The best precision, recall and f1-scores among both the classifiers is
highlighted in blue, red and green respectively. If the values across both
the classifiers are same it not highlighted.

74 5. Evaluation

6. Related Work

This chapter regards previous works done in the domain of text classification on
legal text. Then we regard work done using the splitting of data into n clusters and
then the work done in the classification of multilingual text.

We first mention work about multi-class classification on legal text documents and
subsequently general problems of multi-class classification under class imbalance.
An approach for more fine-grained document classification has been proposed by
Mencia et al. who perform multilabel classification on a large scale problem using
EUR-Lex law texts. They predicted 4,000 labels for 19,596 [MF10]. We employ
their published document collection for training our word embeddings. In contrast,
we examine a setting with high-level labels, bilingual documents, class imbalance,
and limited dataset size. Boella et al. added a module in the existing software
(EUNOMOS, a knowledege management software) by classifying pieces of law into
different categories in accordance with labeled data. This classification takes into
account the similarity between laws from different domains, which in turn helps in
the identification of more relevant information.

Maat et al. performed multi-class classification on sentences from Dutch legisla-
tion and compared a machine learning classifier with a pattern-based classifier. The
sentences were created by dividing the document into categories like definition, obli-
gation, repeal, application, and provision which are structural parts of a legal doc-
ument [dMKW+10]. Song et al. performed an analysis of multilingual opinionated
sentences [SLB+07]. We have employed a similar approach of training the classifiers
with sentences created from the documents. Unlike both the approaches, here the
whole document is divided into sentences and is assigned a label that the document
had.

Previous studies on hierarchical text categorization by Ceci et al. have shown how
hierarchical structures can be used to improve the efficiency and effectiveness of
text classification. They have defined a top-down approach where a document is
first classified into a higher-level category (e.g. Science) and then into a lower-level
category (e.g Biology, Chemistry) [CM07]. We are not following the same approach

76 6. Related Work

but something similar. Instead of classifying the documents into subcategories we
are dividing the dataset into n groups and then employ a root classifier to predict
which of the n classifiers should be invoked in order to predict the given sentence.

Gonalves and Quaresma [GQ10] have shown the benefit of combining multiple SVMs
for several languages and classify international agreements of the European Union.
Their results indicate that encompassing several languages can improve classifier
performance. They set the minimum amount of documents per category to 50, thus
limiting the lack of training documents and class imbalance. This is a restriction
which we did not apply, and another difference is that we use summaries instead
of the longer, original text as inputs for our classifiers to focus on their capability
to handle difficult datasets. C.-P. Wei et al. argued that when the training set
for a single language is small it is less representative of the target semantic space
and a classifier trained on this data set would not yield satisfactory results. They
have shown that adding multilingual data for predefined categories can help in in-
creasing the performance of the classifier [WYL+14]. The dataset we are using is
comparatively less, and it is available in multiple languages in the same predefined
categories. Hence we use those categories to see how well our classifier performs on
a single language and on multiple languages.

Zhang et al. proposed the use of distribution of positive examples in an imbalanced
dataset to dynamically determine a threshold which will bring the number of positive
and negative examples in the dataset close [ZWS13]. This is somewhat similar to
what we have done to resample the dataset. However, contrary to their approach we
are not trying to bring the number of positive and negative sample close; instead,
we are using the number of samples to remove the sample from the majority class.
To conclude the related work, we find multiple aspects of our proposed approaches
and methods in the literature, such as multi-language settings, class-distributional
criteria, ensemble methods and hierarchies.

7. Conclusion, Limitaions and
Future Work

In this chapter, the summary of this thesis and the concluding remarks are presented
in Section 7.1 along with the discussion on some limitations about the approaches
and methods used in this thesis in Section 7.2. Future work is presented in Sec-
tion 7.3.

7.1 Conclusion

This thesis shows that the SVM outperforms the BiLSTM trained on English and
German language in various configurations. However, other characteristics of the
BiLSTM make it viable in situations where there is an abundance of data to train
as the SVMs are not highly scalable compared to the deep learning counterpart.
Also, the BiLSTMs can process multiple languages using a single model; this is
however not the case with SVMs as it would require the use of a language detector
which not only adds processing overload but also can have poor results as the error
by the language detector propagates downwards in the hierarchy. ?? shows that
multilingual input helps the BiLSTM to achieve comparable results to the SVM. It
also concludes that clustering the data affects the performance of the BiLSTM due
to the specialization effect.

The results of the second research question exhibit that general-purpose resources
can perform equivalent to the domain-specific resources on domain-specific tasks
when the weights are allowed to update, however looking closely at the Table 5.5 we
can see that the overall performance of the classifier with general-purpose resources
is quite comparable to the classifier trained on domain-specific embeddings, but
when the classes are underrepresented in the training set, the classifier with domain-
specific embeddings performs better on those classes than the general-purpose em-
beddings. ?? shows that the classifier with a frozen word embedding layer failed to
train correctly and overfitted, the cause for this while looking at the performance
of the classifier with trainable general-purpose word embedding layer, can be due
to the weight updates. The general-purpose word embeddings are trained on data

78 7. Conclusion, Limitaions and Future Work

from various sources. These sources might contain data from multiple domains,
and the fact that the semantics and syntactics of the language used in the different
fields vary extensively, these word embeddings might not have captured the legal
domain-specific semantics and syntactics. During the training of the word embed-
dings, no new words are added to the vocabulary; hence the difference between the
performance of trainable and not trainable general-purpose word embeddings is due
to the weight update.

From the evaluation of the third research question, it is convincing that a classifier
benefits from multilingual inputs. The improvement might be an attribute of the
fact that the number of samples per class for a monolingual classifier is less compared
to the bilingual classifier. Less training data for the monolingual classifier means
that it has less representation of the target semantic space and adding more samples
in the form of a different language would increase the performance of the classifier.
However on some classes the performance of the monolingual classifier is better than
the bilingual classifier.

7.2 Limitations

During the data resampling phase, exploiting the multi-label property of the dataset,
the documents belonging to more than one category were removed from the class
with the highest number of samples. This process introduces a bias in the training
dataset towards the minority classes. Furthermore, eliminating the samples from
the majority class will reduce the representativeness of that class. This could be
severe in the case where the data point being removed is a unique representation of
the class it is being removed from.

Clustering the data for classification is counter-intuitive. Clustering on one hand
groups similar objects or samples together using some form of distance measure
calculated using instance attributes. Segregating instances based on similarity pro-
duces unfavorable conditions for a classifier to learn patterns to distinguish between
similar instances of a group. To illustrate this hypothesis, we would like to present
an application use case of classifying different brands of beer and cola when the
labels on them are removed. It is apparent to distinguish between a beer bottle and
cola bottle but if we were to cluster them based on alcohol content, then all the beer
bottles will be in a separate cluster, and all the cola bottles will be in a different
group. It would be difficult for a classifier to distinguish between a Heineken beer,
a Budweiser beer, and a Carlsberg beer as the color, and the shape of all these bot-
tles is same. The color and the shape, however, will not be the only features used
for classification but are good enough to make a point. On the other hand, in our
dataset the clustering approach has been effective to solve the classification problem
better than a non-clustering approach

7.3 Future Work

With the abundance of text data available with their labels, it becomes rather easy
to test different approaches to provide a better and target specific solutions for
some problems in text categorization genre. This thesis tries to answer a small

7.3. Future Work 79

fraction of those problems. SVMss are thoroughly studied and used in ample of
text categorization problems, but other algorithms such as Naive Bayes classifier
and k-nearest neighbors also have shown to work well with textual data. Similarly,
Convolutional Neural Networks have been demonstrated to outperform BiLSTMss
in many classification tasks.

During the data resampling phase, duplicate samples from the majority class were
removed, and this created a bias towards the minority class. This can be addressed in
the future by having an agnostic evaluation strategy, which considers the multi-label
aspect of the data during the testing phase.

In the case of general-purpose word embeddings, many different algorithms with
their advantages and disadvantages have been shown to perform better than their
predecessors. Google’s multilingual word embedding BERT, Zalando’s Flair and
Allen NLP’s ELMo word multilingual word embeddings are other few general-
purpose word embeddings which can be tested to see if they can perform well for
legal domain specific tasks?

It has been shown during the evaluation that multilingual input helps in the better-
ment of the classifier performance. It would be interesting to know at what point
adding more languages becomes futile when considering training cost versus the
performance increase.

80 7. Conclusion, Limitaions and Future Work

A. Appendix

A.1 Backpropagation Example

To better understand the backpropagation algorithm mention in Section 2.6.1, con-
sider the following example.

Figure A.1: Basic structure of a neural network with weights and bais
initialized

The goal of backpropagation is the adjust the weights such that the neural network
can correctly map the input to the output. To begin with consider the neural network
in the Figure A.1 with inputs to the neural network be i1 = 0.06 and i2 = 0.23 to
which the neural network should output o1 = 0.8 and o2 = 0.2.

In the forward pass, the neural network is feed in the inputs and given the weights
and biases in the Figure A.1, it has to predict the output. It has to figure out the
output at each hidden layer neuron, i.e h1 and h2 and squash each output using
activation function and do the same at output layer. The activation function in this
case is a logistic function of which sigmoid activation is a special case.

82 A. Appendix

To calculate the input at h1 as neth1 we can use Equation 2.13 as follows,

neth1 = W1 ∗ i1 +W2 ∗ i2 + b1 (A.1)

neth1 = 0.10 ∗ 0.60 + 0.20 ∗ 0.23 + 0.65 (A.2)

neth1 = 0.756 (A.3)

And to get the output outh1 at h1 we apply logistic function to Equation A.3,

outh1 =
1

1 + e−neth1
(A.4)

outh1 =
1

1 + e0.756
(A.5)

outh1 = 0.680 (A.6)

Similarly calculating outh2 at h2 will be:

outh2 = 0.681 (A.7)

We can apply same process to output layer neuron, using the output from the hidden
layer neuron h1 and h1 as input.

neto1 = W5 ∗ h1 +W7 ∗ h2 + b2 (A.8)

neto1 = 0.8 ∗ 0.680 + 0.6 ∗ 0.681 + 0.55 (A.9)

neto1 = 1.50 (A.10)

And output outo1 at o1 we apply logistic function to Equation A.10

outo1 =
1

1 + e−neto1
(A.11)

outo1 =
1

1 + e1.50
(A.12)

outo1 = 0.8175 (A.13)

Similarly output at o2 can be obtained using the same process:

outo2 = 0.7957 (A.14)

We have got the output of the final layer, now we can calculate the error. An
error function calculates the difference between desired output also known as target
and the output predicted by the network. For the purpose of this example we
will consider the standard Euclidean distance between the target and the output
predicted by the network which we will henceforth refer to as output.

E(target,output) =
1

2
(target− output)2 (A.15)

As we already know the values of the desired output and the predicted output,
putting those values in the Equation A.15 we can calculate error for o1 and o2 as
follows,

A.1. Backpropagation Example 83

Eo1 =
1

2
(0.8− 0.8175)2 (A.16)

Eo1 = 0.00015 (A.17)

Similarly for Eo2 ,

Eo2 = 0.1774 (A.18)

Combining Equation A.17 and Equation A.18 we can calculate total error Etotal as,

Etotal = Eo1 + Eo2 (A.19)

Etotal = 0.17755 (A.20)

Now as the error is calculated we can update the weights so that the predicted
outputs are closer to the desired outputs. Considering the weight W5, we want to
find out how much change in W5 affects the error, i.e the rate of Etotal w.r.t W5, i.e
∂Etotal

∂W5
.

Applying chain rule,

∂Etotal

∂W5

=
∂Etotal

∂outh1

∗ ∂outh1

∂neth1

∗ ∂neth1

∂W5

(A.21)

Calculating each term individually,

∂Etotal

∂outh1

= change in total loss w.r.t output of h1 (A.22)

From Equation A.19, we can write,

Etotal =
1

2
(targeto1 − outo1)2 +

1

2
(targeto2 − outo1)2 (A.23)

Taking the partial derivative of Etotal with respect to outh1 , the part 1
2
(targeto2 −

outo1)
2 becomes 0 because outh1 does not effect it and hence it is a constant.

∂Etotal

∂outo1
= 2 ∗ 1

2
(targeto1 − outo1)2−1 ∗ −1 + 0 (A.24)

∂Etotal

∂outo1
= −(targeto1 − outo1) = −(0.8− 0.8175) = −0.0175 (A.25)

Now for the second term in the equation Equation A.21, we find out the rate of
change of outh1 w.r.t neth1 , hence we need to calculate the partial derivative of the
logistic function.

outh1 =
1

1− eneth1
(A.26)

∂outh1

∂neth1

= outh1 ∗ (1− outh1) (A.27)

∂outh1

∂neth1

= 0.8175(1− 0.8175) = 0.1491 (A.28)

84 A. Appendix

Finally, how much the no1 changes w.r.t W5,

neto1 = W5 ∗ outh1 +W7 ∗ outh2 + b2 (A.29)

∂neto1
∂W5

= 1 ∗ outh1 ∗W
(1−1)
5 + 0 + 0 = outh1 = 0.680 (A.30)

Puttinng Equation A.25, Equation A.28 and Equation A.30 together, we get:

∂Etotal

∂W5

= −0.0175 ∗ 0.1491 ∗ 0.680 = −0.00177429 (A.31)

To get the new updated weights, we then subtract this the value obtained in Equa-
tion A.31 from the old weight multiplying it with learning rate which is 0.1 in our
case:

W5new = w5 − learning rate ∗ ∂Etotal

∂w5

= 0.8− 0.1 ∗ (−0.00177429) = 0.800177429

(A.32)

Similarly, we can calculate all the weight updates for W1new , W2new , W3new ,W4new ,
W6new ,W7new ,W8new using the method mentioned above.

A.2. Calculating Micro-average Precision Recall and F1-Score 85

A.2 Calculating Micro-average Precision Recall

and F1-Score

The Table A.1 and Table A.2 shows the precision, recall and f1-scores of BiLSTM
for cluster 1 trained on clustered data show in Figure 5.2 and Figure 5.1 as BiLSTM-
D-ED-C evaluated on document level.

Classes Precision Recall F1-Score # Samples
Agriculture 0.90 0.86 0.88 50

Audiovisual and Media 1.00 0.10 0.18 10
Competition 0.96 0.83 0.89 30
Consumers 0.59 0.65 0.62 74

Employment and Social Policy 0.71 0.88 0.79 94
Energy 0.97 0.64 0.77 56

Enterprise 0.65 0.42 0.51 26
Environment 0.70 0.84 0.76 88
Food Safety 0.93 0.82 0.87 76

Information Society 0.71 0.84 0.77 80
Internal Market 0.72 0.75 0.74 148
Public Health 0.86 0.43 0.58 44

Taxation 0.95 0.71 0.82 28
Transport 0.76 0.86 0.81 94
micro avg 0.76 0.76 0.76 898
macro avg 0.81 0.69 0.71 898

Table A.1: CLass-wise precision, recall and f1-score

Predicted Values
1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ct

u
al

V
al

u
e

1 43 0 0 1 2 0 0 2 2 0 0 0 0 0 50

T
otal

S
am

p
les

2 0 1 1 0 0 0 0 0 0 8 0 0 0 0 10
3 0 0 25 0 0 0 0 0 0 0 1 0 0 4 30
4 2 0 0 48 1 0 0 2 2 2 11 0 0 6 74
5 0 0 0 0 83 0 1 0 0 3 7 0 0 0 94
6 0 0 0 1 0 36 0 14 0 1 2 2 0 0 56
7 3 0 0 0 3 0 11 2 0 3 4 0 0 0 26
8 0 0 0 6 2 0 0 74 0 0 2 0 0 4 88
9 0 0 0 6 0 0 0 4 62 0 4 0 0 0 76
10 0 0 0 0 2 0 0 0 0 67 7 0 0 4 80
11 0 0 0 12 7 1 4 1 0 4 111 1 1 6 148
12 0 0 0 7 15 0 0 0 1 0 2 19 0 0 44
13 0 0 0 0 2 0 0 1 0 2 1 0 20 2 28
14 0 0 0 0 0 0 1 6 0 4 2 0 0 81 94

Table A.2: Confusion matrix for cluster 1 of BiLSTM trained on
English and German corpus

86 A. Appendix

To calculate the micro average precision we first need the values of TP and FP.
These values are available in confusion matrix in Table A.2

As descibed in Section 2.12, we calculate micro-average precision for a classifier by
adding values of TP

TP+FP
for all the classes.

Hence, for Agriculture the value in the Table A.2 for TP is highlighted in blue and
FP are highlighted in red and FN are highlighted in yellow.

Micro-Avg Precision for Agriculture =
43

43 + 2 + 3
(A.33)

Micro-Avg Recall for Agriculture =
43

43 + 1 + 2 + 2 + 2
(A.34)

Similarly, getting the values of all the classes from the Table A.2 we get,

Micro-Avg Precision =
43 + 1 + 25 + 48 + 83

43 + 2 + 3 + 1 + 0 + 25 + 1 + 48 + 33 + 83 + 34

+
36 + 11 + 74 + 62 + 67 + 111

11 + 6 + 74 + 32 + 62 + 5 + 67 + 27 + 111 + 43

+
19 + 20 + 81

19 + 3 + 20 + 1 + 81 + 26

Micro-Avg Precision =
618

898
= 0.7583 ≈ 0.76 (A.35)

Similarly, to calculate the micro-average recall we get all the TP and TN values from
the confusion matrix,

Micro-Avg Precision =
43 + 1 + 25

43 + 1 + 2 + 2 + 2 + 8 + 1 + 1 + 25 + 1 + 4

+
48 + 83

48 + 2 + 1 + 2 + 2 + 2 + 11 + 6 + 83 + 1 + 3 + 7

+
36 + 11

36 + 1 + 14 + 1 + 2 + 2 + 11 + 3 + 3 + 2 + 3 + 4

+
74 + 62 + 67

74 + 6 + 2 + 2 + 4 + 62 + 6 + 4 + 4 + 67 + 2 + 7 + 4

+
111

111 + 12 + 7 + 1 + 4 + 1 + 4 + 1 + 1 + 6

+
19 + 20

19 + 7 + 15 + 1 + 2 + 20 + 2 + 1 + 2 + 1 + 2

+
81

81 + 1 + 6 + 4 + 2

A.3. Visualization of word embeddings 87

Micro-Avg Recall =
618

898
= 0.7583 ≈ 0.76 (A.36)

Micro-Avg F1-Score =2 ∗
(

micro-avg precision ∗micro-avg recall

micro-avg precision + micro-avg recall

)
(A.37)

=2 ∗
(

0.76 ∗ 0.76

0.76 + 0.76

)
(A.38)

=0.76 (A.39)

To, calculate macro average precision, we need to add the per-class precision values
from Table A.1

Macro-avg precision is,

=
0.90+1.00+0.96+0.59+0.71+0.97+0.65+0.70+0.93+0.71+0.72+0.86+0.95+0.76

14

Macro-Avg Precision =
11.41

14
≈ 0.81 (A.40)

Macro-avg recall is,

=
0.86+0.10+0.83+0.65+0.88+0.64+0.42+0.84+0.82+0.84+0.75+0.43+0.71+0.86

14

Macro-Avg Precision =
14

= 0.68785714 ≈ 0.69 (A.41)

A.3 Visualization of word embeddings

The visualization of the ten randomly selected words industrie, alike, customary,
siting, thailand, multidisciplinarity, sites, transaktions, hauskatze, formetanate is
given below.

The first step in visualization is to reduce the dimension, for this we are using t-
Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction tech-
nique. Reducing the dimension is necessary because these words are in 300 dimen-
sional vector space and it would be impossible to consider all the dimension during
visualization.

As it is clear from the Figure A.2 that words like transaktions and formetanate are
not present in the general-purpose embedding and hence their embedding weights
are zero and they are coinciding with one another in the Figure A.2.

So we can see that after training transaktions and formetanate now are at different
position Figure A.3. To see the effect of training on these words, we added two new
words (katze,normal) and visualized it.

88 A. Appendix

Figure A.2: Visualization of ten randomly selected words for frozen
word embedding

Figure A.3: Visualization of ten randomly selected words for trained
word embedding

A.3. Visualization of word embeddings 89

Figure A.4: Visualization after adding word katze and normal to the
frozen embeddings

Figure A.5: Visualization after adding word katze and normal to the
trained embeddings

90 A. Appendix

The figure Figure A.4 shows the added two words before the training of the word
embeddings, as we can see that the word katze and hauskatze are not that far from
each other. We can calculate the cosine similarity between these two words before
training as follows

cosine similarity before training(katze,hauskatze) =
katze · hauskatze

‖katze‖ ‖hausekatze‖
(A.42)

(A.43)

= 0.78172445 (A.44)

and the cosine similarity after the embedding is trained is as follows,

cosine similarity after training(katze,hauskatze) = 0.8065112 (A.45)

Similarly, for the words customary and normal which are synonyms, the cosine
similarity before training the embedding and after training embedding

cosine similarity before training(customary,normal) = 0.18904422 (A.46)

cosine similarity after training(katze,hauskatze) = 0.28809269 (A.47)

Hence, training the embedding further is necessary.

Bibliography

[ABV18] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string
embeddings for sequence labeling. In COLING 2018, 27th Inter-
national Conference on Computational Linguistics, pages 1638–1649,
2018. (cited on Page 2)

[AIS04] Abdul Manan Ahmad, Saliza Ismail, and DF Samaon. Recurrent neu-
ral network with backpropagation through time for speech recognition.
In IEEE International Symposium on Communications and Informa-
tion Technology, 2004. ISCIT 2004., volume 1, pages 98–102. IEEE,
2004. (cited on Page 18)

[Aly05] Mohamed Aly. Survey on multiclass classification methods. Neural
networks, 19:1–9, 2005. (cited on Page 6)

[B+95] Christopher M Bishop et al. Neural networks for pattern recognition.
Oxford university press, 1995. (cited on Page 6)

[Bab17] Behrouz Babaki. Cop-kmeans version 1.5, July 2017. (cited on Page 47)

[BBF+00] Pierre Baldi, Søren Brunak, Paolo Frasconi, Gianluca Pollastri, and
Giovanni Soda. Bidirectional dynamics for protein secondary structure
prediction. In Sequence Learning, pages 80–104. Springer, 2000. (cited

on Page 28)

[BDCH11] Guido Boella, Luigi Di Caro, and Llio Humphreys. Using classifica-
tion to support legal knowledge engineers in the eunomos legal docu-
ment management system. In Fifth international workshop on Juris-
informatics (JURISIN), 2011. (cited on Page 2 and 34)

[BDCH+12] Guido Boella, Luigi Di Caro, Llio Humphreys, Livio Robaldo, and
Leon van der Torre. Nlp challenges for eunomos, a tool to build and
manage legal knowledge. Language resources and evaluation (LREC),
pages 3672–3678, 2012. (cited on Page 1)

[BFL+88] P. Biebricher, N. Fuhr, G. Lustig, M. Schwantner, and G. Knorz. The
automatic indexing system air/phys - from research to applications. In
Proceedings of the 11th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’88,
pages 333–342, New York, NY, USA, 1988. ACM. (cited on Page 5)

92 Bibliography

[BGJM17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics, 5:135–146,
2017. (cited on Page 2 and 25)

[BSF+94] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-
term dependencies with gradient descent is difficult. IEEE transac-
tions on neural networks, 5(2):157–166, 1994. (cited on Page 14)

[CAPLL+14] Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle, Mitesh
Khapra, Balaraman Ravindran, Vikas C Raykar, and Amrita Saha.
An autoencoder approach to learning bilingual word representations.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Sys-
tems 27, pages 1853–1861. Curran Associates, Inc., 2014. (cited on

Page 3)

[CB06] Fabrice Colas and Pavel Brazdil. Comparison of svm and some older
classification algorithms in text classification tasks. In Max Bramer,
editor, Artificial Intelligence in Theory and Practice, pages 169–178,
Boston, MA, 2006. Springer US. (cited on Page 2)

[CBHK02] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique.
Journal of artificial intelligence research, 16:321–357, 2002. (cited

on Page 35)

[CC08] Michael Chau and Hsinchun Chen. A machine learning approach to
web page filtering using content and structure analysis. Decis. Support
Syst., 44(2):482–494, January 2008. (cited on Page 2)

[CJMdS17] Edilson Anselmo Corrêa Júnior, Vanessa Queiroz Marinho, and Lean-
dro Borges dos Santos. Nilc-usp at semeval-2017 task 4: A multi-view
ensemble for twitter sentiment analysis. Proceedings of the 11th In-
ternational Workshop on Semantic Evaluation (SemEval-2017), 2017.
(cited on Page 2)

[CLR+17] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic
Denoyer, and Hervé Jégou. Word translation without parallel data.
arXiv preprint arXiv:1710.04087, 2017. (cited on Page 25 and 52)

[CM07] Michelangelo Ceci and Donato Malerba. Classifying web documents in
a hierarchy of categories: a comprehensive study. Journal of Intelligent
Information Systems, 28(1):37–78, Feb 2007. (cited on Page 75)

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995. (cited on Page 6)

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018. (cited on Page 2)

Bibliography 93

[DKM+16] Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird, and Trevor
Cohn. Learning crosslingual word embeddings without bilingual cor-
pora. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2016), Texas, USA, November
2016. Association for Computational Linguistics. (cited on Page 25

and 52)

[dMKW+10] Emile de Maat, Kai Krabben, Radboud Winkels, et al. Machine learn-
ing versus knowledge based classification of legal texts. In JURIX,
pages 87–96, 2010. (cited on Page 2 and 75)

[FGP06] Weiguo Fan, Michael D. Gordon, and Praveen Pathak. An integrated
two-stage model for intelligent information routing. Decis. Support
Syst., 42(1):362–374, October 2006. (cited on Page 2)

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements
of statistical learning, volume 1. Springer series in statistics New York,
NY, USA:, 2001. (cited on Page 10)

[FOD+09] Paul Ferguson, Neil O’Hare, Michael Davy, Adam Bermingham,
Paraic Sheridan, Cathal Gurrin, and Alan F Smeaton. Exploring the
use of paragraph-level annotations for sentiment analysis of financial
blogs. 2009. (cited on Page 29 and 39)

[For08] George Forman. Bns feature scaling: An improved representation
over tf-idf for svm text classification. In Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM ’08,
pages 263–270, New York, NY, USA, 2008. ACM. (cited on Page 2)

[FSS99] Toshiaki Fukada, Mike Schuster, and Yoshinori Sagisaka. Phoneme
boundary estimation using bidirectional recurrent neural networks and
its applications. Systems and Computers in Japan, 30(4):20–30, 1999.
(cited on Page 28)

[GAL+06] David Guthrie, Ben Allison, Wei Liu, Louise Guthrie, and Yorick
Wilks. A closer look at skip-gram modelling. In LREC, pages 1222–
1225, 2006. (cited on Page 21)

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016. (cited on Page 16)

[GLF+09] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami,
Horst Bunke, and Jürgen Schmidhuber. A novel connectionist system
for unconstrained handwriting recognition. IEEE transactions on pat-
tern analysis and machine intelligence, 31(5):855–868, 2009. (cited on

Page 26 and 52)

[GQ10] Teresa Gonalves and Paulo Quaresma. Multilingual text classifica-
tion through combination of monolingual classifiers. CEUR Workshop
Proceedings, 605, 01 2010. (cited on Page 76)

94 Bibliography

[HBF+01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber,
et al. Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies, 2001. (cited on Page 26)

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. (cited on Page 26 and 28)

[HSP99] Geoffrey E Hinton, Terrence Joseph Sejnowski, and Tomaso A Poggio.
Unsupervised learning: foundations of neural computation. MIT press,
1999. (cited on Page 6)

[HW91] Philip J. Hayes and Steven P. Weinstein. Construe/tis: A system for
content-based indexing of a database of news stories. In Proceedings
of the The Second Conference on Innovative Applications of Artificial
Intelligence, IAAI ’90, pages 49–64. AAAI Press, 1991. (cited on

Page 5)

[ID10] Nitin Indurkhya and Fred J Damerau. Handbook of natural language
processing, volume 2. CRC Press, 2010. (cited on Page ix and 19)

[IS18] Vladimir Iglovikov and Alexey Shvets. Ternausnet: U-net with vgg11
encoder pre-trained on imagenet for image segmentation. arXiv
preprint arXiv:1801.05746, 2018. (cited on Page 68)

[Joa98] Thorsten Joachims. Text categorization with support vector machines:
Learning with many relevant features. In Claire Nédellec and Cé-
line Rouveirol, editors, Machine Learning: ECML-98, pages 137–142,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. (cited on Page 2

and 10)

[KS96] David J Ketchen and Christopher L Shook. The application of cluster
analysis in strategic management research: an analysis and critique.
Strategic management journal, 17(6):441–458, 1996. (cited on Page 8)

[LMF10] Eneldo Loza Menćıa and Johannes Fürnkranz. Efficient multilabel
classification algorithms for large-scale problems in the legal do-
main. In Enrico Francesconi, Simonetta Montemagni, Wim Peters,
and Daniela Tiscornia, editors, Semantic Processing of Legal Texts –
Where the Language of Law Meets the Law of Language, volume 6036
of Lecture Notes in Artificial Intelligence, pages 192–215. Springer-
Verlag, 1 edition, May 2010. accompanying EUR-Lex dataset avail-
able at http://www.ke.tu-darmstadt.de/resources/eurlex. (cited on

Page 51)

[Luh58] Hans Peter Luhn. The automatic creation of literature abstracts. IBM
Journal of research and development, 2(2):159–165, 1958. (cited on

Page 5)

http://www.ke.tu-darmstadt.de/resources/eurlex

Bibliography 95

[LWHM16] Jörg Landthaler, Bernhard Waltl, Patrick Holl, and Florian Matthes.
Extending full text search for legal document collections using word
embeddings. In JURIX, pages 73–82, 2016. (cited on Page 1)

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013. (cited on Page 23 and 25)

[MDP+11] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, An-
drew Y Ng, and Christopher Potts. Learning word vectors for senti-
ment analysis. In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human language technologies-
volume 1, pages 142–150. Association for Computational Linguistics,
2011. (cited on Page 21)

[MF10] Eneldo Loza Menćıa and Johannes Fürnkranz. Efficient multilabel
classification algorithms for large-scale problems in the legal domain.
In Semantic Processing of Legal Texts, pages 192–215. Springer, 2010.
(cited on Page 33 and 75)

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml,
volume 30, page 3, 2013. (cited on Page 14)

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New
York, NY, USA, 1 edition, 1997. (cited on Page 5)

[MLS13] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting sim-
ilarities among languages for machine translation. arXiv preprint
arXiv:1309.4168, 2013. (cited on Page 25)

[MO06] Craig Macdonald and Iadh Ounis. The trec blogs06 collection: Cre-
ating and analysing a blog test collection. Department of Computer
Science, University of Glasgow Tech Report TR-2006-224, 1:3–1, 2006.
(cited on Page 29)

[MRS09] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to information retrieval. Natural Language Engineering,
16(1):279–280, 2009. (cited on Page 32)

[MRS10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to information retrieval. Natural Language Engineering,
16(1):100–103, 2010. (cited on Page 10)

[MS97] Dieter Merkl and Erich Schweighofer. The exploration of legal text
corpora with hierarchical neural networks: A guided tour in public
international law. In ICAIL, volume 97, pages 98–105. Citeseer, 1997.
(cited on Page iii and 2)

[MŽBCB05] Martin Možina, Jure Žabkar, Trevor Bench-Capon, and Ivan Bratko.
Argument based machine learning applied to law. Artificial Intelli-
gence and Law, 13(1):53–73, 2005. (cited on Page 2)

96 Bibliography

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep con-
textualized word representations. In Proc. of NAACL, 2018. (cited

on Page 2)

[Pre98] Lutz Prechelt. Early Stopping - But When?, pages 55–69. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998. (cited on Page 53)

[RHW+88] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al.
Learning representations by back-propagating errors. Cognitive mod-
eling, 5(3):1, 1988. (cited on Page 16)

[Rob04] Stephen Robertson. Understanding inverse document frequency: on
theoretical arguments for idf. Journal of documentation, 60(5):503–
520, 2004. (cited on Page 21)

[Rou87] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. Journal of computational and
applied mathematics, 20:53–65, 1987. (cited on Page 8)

[RPHF11] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Clas-
sifier chains for multi-label classification. Machine learning, 85(3):333,
2011. (cited on Page 6)

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categoriza-
tion. ACM Comput. Surv., 34(1):1–47, March 2002. (cited on Page 2)

[SEK+08] Yohei Seki, David Kirk Evans, Lun-Wei Ku, Le Sun, Hsin-Hsi Chen,
Noriko Kando, and Chin-Yew Lin. Overview of multilingual opinion
analysis task at ntcir-7. In NTCIR, 2008. (cited on Page 29)

[SHMO09] Rodrygo LT Santos, Ben He, Craig Macdonald, and Iadh Ounis. Inte-
grating proximity to subjective sentences for blog opinion retrieval.
In European Conference on Information Retrieval, pages 325–336.
Springer, 2009. (cited on Page 29)

[SLB+07] Dawei Song, Raymond Y.K. Lau, Peter D. Bruza, Kam-Fai Wong, and
Ding-Yi Chen. An intelligent information agent for document title
classification and filtering in document-intensive domains. Decision
Support Systems, 44(1):251–265, November 2007. (cited on Page 2

and 75)

[SM05] Pascal Soucy and Guy W Mineau. Beyond tfidf weighting for text
categorization in the vector space model. In IJCAI, volume 5, pages
1130–1135, 2005. (cited on Page 20)

[SP97] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,
1997. (cited on Page 28)

Bibliography 97

[SPH02] Ralf Steinberger, Bruno Pouliquen, and Johan Hagman. Cross-lingual
document similarity calculation using the multilingual thesaurus eu-
rovoc. In International Conference on Intelligent Text Processing and
Computational Linguistics, pages 415–424. Springer, 2002. (cited on

Page 52)

[Tho53] Robert L Thorndike. Who belongs in the family? Psychometrika,
18(4):267–276, 1953. (cited on Page 8)

[VA16] Zeev Volkovich and Renata Avros. Text classification using a novel
time series based methodology. Procedia Computer Science, 96:53–62,
2016. (cited on Page 28)

[vGB18] Marcel van Gerven and Sander Bohte. Artificial neural networks as
models of neural information processing. Frontiers Media SA, 2018.
(cited on Page 2)

[WCR+01] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Con-
strained k-means clustering with background knowledge. In Icml, vol-
ume 1, pages 577–584, 2001. (cited on Page 7)

[WLKF16] Yue Wu, Jun Li, Yu Kong, and Yun Fu. Deep convolutional neural
network with independent softmax for large scale face recognition. In
Proceedings of the 24th ACM international conference on Multimedia,
pages 1063–1067. ACM, 2016. (cited on Page 15)

[WWH05] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing con-
textual polarity in phrase-level sentiment analysis. In Proceedings of
Human Language Technology Conference and Conference on Empiri-
cal Methods in Natural Language Processing, 2005. (cited on Page 29)

[WY12] Shuo Wang and Xin Yao. Multiclass imbalance problems: Analysis
and potential solutions. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(4):1119–1130, 2012. (cited on

Page 35)

[WYL+14] Chih-Ping Wei, Chin-Sheng Yang, Ching-Hsien Lee, Huihua Shi, and
Christopher C. Yang. Exploiting poly-lingual documents for improv-
ing text categorization effectiveness. Decis. Support Syst., 57:64–76,
January 2014. (cited on Page 3, 42, 71, and 76)

[ZBH+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gen-
eralization, 2016. (cited on Page 53)

[ZSCM13] Will Y. Zou, Richard Socher, Daniel Cer, and Christopher D. Man-
ning. Bilingual word embeddings for phrase-based machine transla-
tion. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1393–1398, Seattle, Washington,

98 Bibliography

USA, October 2013. Association for Computational Linguistics. (cited

on Page 3)

[ZWS13] Jing Zhang, Xindong Wu, and Victor S. Sheng. Imbalanced multiple
noisy labeling for supervised learning. In AAAI, 2013. (cited on

Page 76)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 13. May 2019

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Introduction
	1.2 Goals of this Thesis
	1.3 Structure of the Thesis

	2 Background
	2.1 Document Categorization
	2.2 Machine Learning and Document Categorization
	2.2.1 Supervised and Unsupervised Learning

	2.3 Multi-class vs Multi-label Classification
	2.4 K-means Clustering
	2.4.1 Pairwise constrained K-means
	2.4.2 Choosing k
	2.4.2.1 Silhouette Score
	2.4.2.2 Elbow Analysis

	2.5 Support Vector Machine
	2.6 Deep Learning
	2.6.1 Backpropagation
	2.6.2 Backpropagation Through Time

	2.7 Natural Language Processing
	2.8 Text Normalization
	2.9 Text Representation
	2.9.1 Term Frequency-Inverse Document Frequency
	2.9.2 Word Embeddings
	2.9.3 Cross Lingual Word Embedding
	2.9.4 Long Short Term Memory

	2.10 Bidirectional Long Short Term Memory
	2.11 Sentence-based approach for training LSTMs
	2.12 Evaluation Matrices

	3 Concept
	3.1 Phase 1: Data Collection and Cleaning
	3.2 Phase 2: Data Clustering and Resampling
	3.3 Phase 3: Model Architecture and Training
	3.3.1 Research Question 1:
	3.3.2 Research Question 2:
	3.3.3 Research Question 3:

	4 Implementation
	4.1 Data Collection
	4.2 Data Cleaning
	4.3 Clustering
	4.4 Data Resampling
	4.5 Training the Word Vectors
	4.5.1 Training Cross Lingual Word Embedding

	4.6 Architecture and Training
	4.6.1 First Research Question
	4.6.2 Second Research Question
	4.6.3 Third Research Question

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation Approach
	5.2.1 Evaluation for the first research question
	5.2.2 Evaluation for the second research question
	5.2.3 Evaluation for third research question

	6 Related Work
	7 Conclusion, Limitaions and Future Work
	7.1 Conclusion
	7.2 Limitations
	7.3 Future Work

	A Appendix
	A.1 Backpropagation Example
	A.2 Calculating Micro-average Precision Recall and F1-Score
	A.3 Visualization of word embeddings

	Bibliography

