Otto von Guericke University of Magdeburg

School of Computer Science

OTTO VON GUERICKE

UNIVERSITAT

MAGDEBURG

Master’s Thesis

Effect of annotation-based
variability on program
comprehension

Author:

Maria Kanyshkova
April 14, 2019

Advisors:

Prof. Gunter Saake
Dipl.-Inf. Wolfram Fenske

Department of Databases and Software Engineering

Kanyshkova, Maria:
Effect of annotation-based variability on program comprehension
Master’s Thesis, Otto von Guericke University of Magdeburg, 2019.

Contents

List of Figures v
List of Tables vii
List of Code Listings ix
1 Introduction 1
2 Background 5
2.1 Variable Software 5
2.1.1 CPP-Based Variability 6

2.2 Variability-Aware Code Smells 6
2.2.1 Variability-Aware Metrics 7

2.3 Program Comprehension 8
2.4 Designing and Conducting Surveys 9
24.1 Survey Errorso Lo 9

2.4.2 Benefits and Costs of a Survey 9

2.4.3 Designing with Program Comprehension in Mind 10

2.5 Regression Models oo 11
2.5.1 Logistic Regression and Negative Binomial Regression 11

2.6 SUumMmary 11

3 Methodology 13
3.1 Survey in a Nutshell 0o 13
3.2 Goal of the Survey 14
3.3 Code Examples and Questions 14
3.4 Subject Selection 19
3.5 SUMMATY e 22

4 Survey Results 25
4.1 Subject Group Comparison 25
4.1.1 Subject Demographics 25

4.1.2 Baseline Comparison 30

4.2 Answering the Research Questions 33

v Contents
4.2.1 RQI: Do Different Amounts of Preprocessor Use Affect Developer
Effectiveness During Program Comprehension Tasks? 33
4.2.2 RQ2: Do Metrics of Preprocessor Use Reflect Subjective Assess-
ments of Code Quality? 37
4.2.3 RQ3: Which Reasons Do Developers Mention for Poor Program
Comprehension? 46
4.3 Discussion e e 50
4.3.1 Demographics Discussion, 50
4.3.2 Notable Examples. 54
4.3.3 Reasons and Mood 55
4.3.4 Regression Analysis oL 56
4.4 Threats to Validity oo o7
4.4.1 Internal Validity oo o7
4.4.2 External Validity 58
4.5 SUumMmary . . . o. ... 58
5 Related Work 61
6 Conclusion 65
A Appendix 69
A1l Code Examples 69
AT Viml8 e 69
A.1.2 Viml5 Originalo 70
A.1.3 Vimlb Refactored oL 71
A.14 Viml3 Original 72
A.1.5 Viml3 Refactored 74
A.1.6 Emacsl2 Original oL 7
A.1.7 Emacsl2 Refactored 78
A.1.8 Emacsll Original o 79
A.1.9 Emacsll Refactored L. 80
A2 Hardest Lines 81

Bibliography 85

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

The first question of example vim18 18
The second question of example vim18 19
The third question of example vim18 20
The fourth question of example vim18 20
The fifth question of example vim18 21
The sixth question of example vim18 21
Boxplot of the age of the two subject groups 26
Boxplot of the age of both subject groups combined 27
Gender of both subject groups combined 28
Boxplot of the general and C programming experience. 29
Correctness of the first comprehension task 34
Correctness of the second comprehension task 36
Appropriateness of the preprocessor use in percent 38
Ease of understanding the example code 42
Ease of maintaining the example code 43
Ease of extending the example code 44
Ease of finding bugs in the example code 45
Reasons for poor program comprehension 47

Mood of reasonso, 49

Vi

List of Figures

List of Tables

3.1 Metrics of used examples Lo

4.1 Subjects’ roles in projects
4.2 Regression correctness of comprehension tasks to demographics.
4.3 Regression subjective assessment question 1 to demographics

4.4 Regression subjective assessment question 2 (understand, maintain) to
demographicso

4.5 Regression subjective assessment question 2 (extend, detect Bugs) to
demographics

4.6 Subjective question 2 answers of group 1 and 2 for vim18
4.7 Correctness task 1 Lo
4.8 Correctness task 2o
4.9 Regression of comprehension tasks 1 and 2 to metrics
4.10 Subjective assessment question 1o
4.11 Regression subjective assessment question 1 to metrics
4.12 Subjective assessment question 2 (original examples)
4.13 Subjective assessment question 2 (refactored examples)

4.14 Regression of subjective assessment question 2 (undertand, maintain) to
metrics e

15

28
30
31

31

32
32
33
35
37
37
39
40
41

42

4.15 Regression of subjective assessment question 2 (extend, detect) to metrics 43

List of Code Listings

3.1
3.2
4.2
4.1
Al
A2
A3
A4
A5
A6
AT
A8
A9

Vimlb originalo 16
Vimlb refactoredo 17
Hardest lines vim15 original, 50
Hardest lines vim18o 50
Full code of example vim18 69
Full code of example vim15 70
Full code of example vim15 refactored 71
Full code of example vim13 72
Full code of example vim13 refactored 74
Full code of example emacs12 L. 7
Full code of example emacs12 refactored 78
Full code of example emacs11 79
Full code of example emacsl1 refactored 80

List of Code Listings

1. Introduction

Since the 20th century we have seen an increase in individualised goods across all in-
dustries. Whether fast food, computers or car manufacturing, customers enjoy the
possibility to customise products by adding, removing and substituting parts. This has
been made possible with the introduction of the concept of a product line, which is
defined as “a set of products in a product portfolio of a manufacturer that share sub-
stantial similarities and that are, ideally, created from a set of reusable parts* [SABK13].
By using product lines the so called mass customization becomes possible, where man-
ufacturers produce different standardised and reusable parts that are then chosen by
the customer to create their own variation of the product.

In software development mass customisation is implemented through software product
lines. Just like their counterparts from other industries, software product lines are
constructed from reusable parts which can be combined to make a tailored product.
These reusable parts are called core assets and are used to implement features. A
feature is used to communicate differences between products and contains a certain
functionality within the software product line. This allows to streamline development
for domains where the resulting products have similar but not identical requirements,
e.g. different operating systems [SABK13].

There are different approaches for implementing software product lines. One of those
approaches is annotation-based variability (also known as preprocessor-based variabil-
ity). One possible implementation is through #ifdef directives or similar constructs.
Developers use such directives to annotate code fragments inside a body of code, mak-
ing feature code that is surrounded by annotations. During the compilation, feature
code is removed from the code according to the configuration file, to generate a software
variant [KKATS12].

A big problem of software product lines is their increased complexity compared to
software systems without variability. As code is split between features across several
classes or files, it can be hard to keep track which parts of the code will be in a specific

2 1. Introduction

variant of the software. In annotation-based approaches the code of a feature can be
scattered across the software system or tangled with the base code or with the code
of other features, making program comprehension complex [LALT10]. Annotation-
based variability in form of preprocessor annotation has an especially bad reputation
but is widely used in practice [MKR*15]. Such code is hard to read and maintain

[MKR*15][MBW16].

Goal of this Thesis

When implementing variability, the code may end up containing variability-aware code
smells. Code smells are design flaws in the code that usually indicate the need of
a restructuring of the code, i.e. a refactoring. There are specific variability-aware
code smells, defined through metrics [FSS17], in software-product lines but so far it
is unclear whether they have a negative impact on program comprehension [FS15].
There are many studies [LWE11, MKR"15, LKA11] that investigate the impact of
certain annotation-based variability mechanisms (e.g. the effect of undisciplined an-
notations [LKKA11l, SLSA13]) and found that through use of annotations the source
code may become obfuscated, therefore hindering program comprehension and intro-
ducing subtle errors [FSS17]. Since the variability-aware code smells are usually defined
through several such aspects, it is not possible to transfer the findings of these studies
to the code smells. In this thesis we want to find out how annotation-based variabil-
ity affects program comprehension of experienced developers. Additionally we hope to
clarify how reliable code metrics are in regards of predicting code comprehension of
experienced developers.

To test whether developers understanding of code with varying amounts of variability-
aware code smells differ, we conduct an online survey with code examples of smelly
variable code. The code smells of the examples vary from smelly to very smelly. The
online survey is presented in two variants, where we alternate between the original code
fragments (as taken from the open source projects Vim and Emacs) and refactored code
fragments, where the annotation amount and code smells have been reduced without
affecting functionality. The survey asks questions about code understanding which we
will use to establish whether the quality and quantity of annotations have an impact
on program comprehension. The goal is to establish how well metrics can predict code
understanding of real developers. In a nutshell, our hypothesis is that code that reaches
higher smelliness levels (e.g. through the use of more nesting, more #1ifdef statements,
etc.) is harder to understand.

The results of this thesis could help further understanding on the effect annotation-
based variability has on program comprehension. Moreover, the results of this survey
could improve automatic detection of problematic annotation use in variable software.

Structure of the Thesis

The thesis is structured in the following way. Chapter two gives an overview over
the relevant background on variable software, variability-aware code smells, program

comprehension, conducting online surveys and linear regression. Chapter three explains
the details of the survey design as well as the chosen variability-aware metrics. In
chapter four we present the results of our survey and discuss them. Chapter six contains
a summary of the thesis. In chapter seven we will give an overview on related work.
In chapter eight we summarise the thesis and give a perspective over possible future
research.

1. Introduction

2. Background

This chapter introduces the background of the themes this thesis touches upon. This
includes an introduction of variable software, variability-aware code smells and their
metrics, as well as conducting online surveys with program comprehension in mind.

2.1 Variable Software

Variable software is the answer to the rising desire for individualised goods and cheap,
easy to maintain software systems [SABK13]. Also known as software product lines,
variable software uses a set of features that can be combined to implement new software
variants. Features are characteristics of the software system, in software product lines
they are used to communicate commonalities and differences of product variants. More-
over features are used to guide the structure, reuse and variation between the phases of
the software life cycle.

Variability can be expressed in terms of common and optional features, which is referred
to as feature modelling [SABK13]. A feature model specifies how many valid products
a software product line can produce. More specifically, since some features might not
be compatible due to conflicting implementations and some features may require the
presence of other features to build on them, feature models describes such relationships
between features and defines which feature configurations are valid.

In practice, there are two main approaches to implement variable software: annotation-
based and composition-based variability [SABK13]. Those approaches influence the
structure of the source code and the way products are generated.

Composition-based approaches implement features as units (e.g. files, classes,
etc.) [SABK13]. An example would be a framework with plug-ins, where each plug-in is
a feature. Products can be generated by including or excluding different plug-ins. This
approach has the disadvantage that the complexity of the mapping between features
can become high and that the variability’s granularity is coarse.

6 2. Background

Annotation-based approaches have a single code base where an annotation marks the
feature a particular code fragment belongs to [SABK13]. When a product variant
is derived, all code from deselected features is excluded from compilation. Only not
annotated code and selected feature code remains in the product code. Because of
the ease of use and because many program environments already provide the means
to implement them, annotation-based approaches are widely used in practice. The
disadvantages of this approach are the increase of complexity and a lack of modularity.
Often the annotation-based approach is implemented using the C preprocessor. The
next section explains how CPP-based variability is implemented.

2.1.1 CPP-Based Variability

In this thesis we use C functions which implement annotation-based variability through
the C preprocessor. The C preprocessor (CPP) is used to transform the source code for
compilation [KR06]. The transformation is done using directives and macros. Macros
are shortcuts of definitions that will be expanded when compiled. Directives control
the inclusion of definitions from other files and define macros. Directives like #1if
and #1ifdef also allow conditional compilation of the code. When using conditional
compilation, the compiler will include or exclude certain parts of the source code based
on the given conditions.

Conditional compilation can be used to implement variability [KR06, LALT10]. Fea-
tures are then implemented by guarding the variable code with #1ifdef and controlled
through feature expressions. The name of the macro in the feature expression is referred
to as a feature constant.

CPP-based variability has implications for the structure of the source code [LWEI1,
DSRS03]. The directives used to implement variability are intrusive and break the flow
of the code. Next, the feature expressions may use several feature constant which leads
to a higher difficulty when tracing the inclusion condition of a certain part of code.
Finally, tangling and scattering are likely to be introduced since all feature code is
located in a shared code base. Therefore CPP variability can have a negative effect on
understanding and changing annotated code.

2.2 Variability-Aware Code Smells

Code smells are bad practises in code that can come from design flaws or from code
decay [Fow00]. They lead to a harder understanding and therefore maintaining of the
code. Code smells can be resolved by refactoring the code through certain techniques.

Software product lines, as every long-living software system, is prone to code decay.
Code smells are affected by the variability, altering them and making them harder
to find [FS15, FSMS15]. Variable software creates new opportunities for introducing
design flaws into the code. The existing code smells do not capture the nature of code
decay introduced by variable software systems. Therefore new variability-aware code

2.2. Variability-Aware Code Smells 7

smells were derived from already existing. Here these variability-aware code smells are
presented.

Inter-feature Code Clones are a variable-aware code smell that expands the Duplicated
Code code smell [FS15]. Similar to the original code smell, code is copied with no
or little alteration either within a feature or across several features. This can lead to
inconsistent changes as development progresses and increases complexity of the code.

The Annotation Bundle smell is derived from the Long Method smell and describes
a method with many variable parts [FS15]. Therefore the code is heavily annotated
(e.g. with CPP directives), possibly with nested annotations. While the compiled
function may end up being short, the variable source code is difficult to understand for
a certain configuration as the annotations obscure the view of the core functionality.
Maintenance becomes harder as special care is needed to alter the code and because
locating the origin of a bug is more difficult without knowing the exact configuration.
In this thesis the Annotation Bundle code smell is affecting our chosen examples.

The Long Refinement Chain is derived from the Long Method smell as well and is
the composition-based counterpart of the previously described smell [FS15]. It abuses
feature refinements through excessive use. Code is then harder to understand and bug
finding is obstructed because the affect of a single feature is unclear.

The code smell Latently Unused Parameter derives from both Long Parameter and
Speculative Generality smells [F'S15]. The original smells describe methods with many
parameters and unused functionality respectively. The variability-aware variant arises
when optional parameters (i.e. such parameters that are only needed for certain fea-
tures) are present. It is problematic because the developers assumes a declared pa-
rameter to have some effect on the outcome of the code. Whenever this isn’t the case,
confusion may arise and the code becomes harder to understand.

2.2.1 Variability-Aware Metrics

It is possible to detect variability-aware code smells using metrics [FSMS15]. A soft-
ware metric is a collective term used to describe measurements performed on a source
code [FN99] in order to provide information on a software system. The variability-aware
metrics are briefly described in this section because we investigate whether they prop-
erly reflect human program comprehension and subjective perception of code quality.

In this thesis we use several previously established metrics in order to compute infor-
mations about our examples [F'S15, FSMS15]. The lines of code metric LOC counts the
source code lines of the code fragment, ignoring blank lines and comments. For better
control of LOC changes between different examples, we do not use the LOC metric,
instead we introduce the log2loc metric which tracks changes in LOC amounts through
the binary logarithm. The added complexity through the annotations is reflected in
the LOAC, NONEST, NONEG, NOFL, and NOFC metrics. The LOAC metric also
ignores blank and commented lines and counts lines inside annotations. Lines found in
annotations are only counted once. We do not track this metric on its own, rather we

8 2. Background

compute the ratio of annotated to not annotated code and use this through the metric
loacratio. The NONEST metric reflects the accumulated nesting depth of annotation
in the code fragment. The first #ifdef in the code has a nesting depth of zero. A
second #1fdef within the first would have a nesting depth of one and so on. Nesting
depths are accumulated, two feature locations with a nesting depth of one each would
have a NDacc value of 2. NONEG is the number of negation in the #ifdef directives.
It includes constructs like #ifndef, #if !defined. Since #else branches can be
expressed as #1f X #endif #if !X #endif, they also increase NONEG by one.
NOFL is the number of feature locations, i.e. blocks annotated through a preprocessor
directive like #ifdef. A complex expression like #ifdef A && B is counted once.
An #ifdef with an #else is counted as two feature locations. NOFC is the number of
unique feature constants in the code fragment. Feature constants occurring in multiple
feature locations are counted only once.

The metric ABSmell describes how badly a function suffers from several individual
smells, namely the LocationSmell, the ConstantsSmell and the NestingSmell. The indi-
vidual code smells can be differently weighted, in order to prioritise the effect a certain
smell has. The LocationSmell includes the ratio of annotated code to all code, mul-
tiplied with the number of feature locations NOFL. This is based on the assumptions
that a bigger amount of LOAC in a smaller amount of LOC and several small feature lo-
cations are more problematic. The ConstantsSmell consists of the ratio between NOFC
and NOFL in order to capture the average complexity of feature expressions within the
code fragment. NestingSmell is the ratio between NONEST and NOFL and accounts
for nesting [F'S15].

2.3 Program Comprehension

The term program comprehension refers to the activity of understanding how a software
system or part of it works. Program comprehension is a task often undertaken before
changing code, as developers have to explore relevant parts of the code in order to per-
form the change. The amount of time spent on obtaining and sharing knowledge about
a software system can be as high as 50 percent of a developers work time [MTRK14].

There are several categories of program comprehension models: top-down, bottom-up
and integrated models [FSF11]. Top-down models explain how programmers come to a
general hypothesis of the purpose of a program and the following stepwise refinement as
source code is evaluated. In bottom-up models, the developer starts with code fragments
and proceeds to group them into semantic groups to get a better understanding of the
functionality and finally the general purpose of the program. The models can be also
be combined into the integrated model.

However, since program comprehension is an internal process, we can’t observe it di-
rectly [FSE11]. Therefore we need to use other indicators to measure it, for example
metrics, self assessment, tasks and think-aloud protocols. The metrics used in this
thesis are explained in Section 2.2.1. Metrics alone shouldn’t be used for program com-
prehension assessments because they lack human interaction. Self estimation refers to

2.4. Designing and Conducting Surveys 9

the subjects subjective rating on how well they understood the code. The problem with
this indicator is that it can be easily biased. Subjects can also be asked to perform tasks
on the code, e.g. finding a bug. To perform the task successfully, the subjects have
to understand the source code therefore perform a comprehension process. Finally in
think-aloud protocols, subjects audibly comment their work process on a code fragment,
making the process observable.

We decided to use metrics to establish how well the subjects are expected to perform
with our examples. Additionally we let the subjects solve tasks that are later evaluated
regarding correctness and completeness. The subjects are also asked to self-estimate
how well they comprehend the code and how easy maintaining this code would be.

2.4 Designing and Conducting Surveys
2.4.1 Survey Errors

A good survey design is vital for comprehensive and accurate results. When conducting
a survey, it is important to consider several points of failure and navigate around them.
There are four main survey errors that can lead to a point of failure.

The coverage error is present when the population in question isn’t adequately covered.
This happens if there are differences between the surveyed and non-surveyed people.
These differences would lead to a result that wouldn’t fully represent the population.

The sampling error happens when the surveyed sample isn’t large enough to ensure
random drawings. How large the group of participants has to be can be calculated based
on the population size, the confidence level and the margin of error. The population size
includes all people the survey aims to represent. The confidence level is the probability
that the used sample accurately reflects the attitudes of the population. The margin
of error is the percentage range that indicates possible deviations of the population’s
responses from the sample’s responses.

The non-response error is present when people who respond to the survey are different
from those who do not respond. The more people respond to the survey, the smaller
the non-response error. Accessing and submitting the questionnaire must be made easy
for the participants.

The measurement error occurs if the provided answers are inaccurate, e.g. because of
the question design. In order to avoid this error, the survey must be designed in a way
to encourage honest answers and give options to provide feedback [Dill1].

2.4.2 Benefits and Costs of a Survey

Survey response as social exchange is meant to increase the likelihood of response to
the survey by increasing the benefits and decreasing the costs of participation. The
benefits of participation are what the participant expects to gain from filling in the
survey. They can be financial incentives, social validation through the circle of other

10 2. Background

participants, support of group values or personal gratitude from the surveyor. The cost
of participation is what the subject loses through participating in the survey, e.g. time.

There are certain ways of increasing the benefits of participation in a survey. One of
them is providing information on the survey, especially why it’s being conducted and
how the person receiving the information can help. Asking for help further encourages
responses. This is especially important in the initial e-mail and its subject matter as
this will be the first thing the recipients are going to see of the survey. A positive regard
shown by personally addressing the subjects is more motivating than a generic e-mail.
Likewise, thanking the participant for the consideration of participating in the survey
is important.

A more interesting questionnaire will have higher response rates. This includes both
the covered topic and the visual representation of the questionnaire. The layout and
design should be engaging and the question order should be thoughtfully designed.
The questions should also be easy to understand and answer. Materialistic rewards
can be used as a motivator, although different people will perceive different rewards as
appropriate for their time. A non-materialistic reward could be the support of group
values of a certain surveyed group or social validation of the participant within that

group.

The perceived costs of participating can be decreased. Participating in the survey should
be easy and convenient, e.g. through a personal e-mail with a direct link to the survey.
The questionnaire should also be short and easy to complete and ask for little personal
information about the participant. The language used throughout the questionnaire and
further communication shouldn’t subordinate or disrespect the participant. Finally, it
can help to refer to previously taken tasks a person took, that are linked to the survey
[Dill1].

2.4.3 Designing with Program Comprehension in Mind

There are several potential problems when designing and conducting a survey with
program comprehension in mind [DPSK07]. For instance, the key variables can simply
include the accuracy of the answers and the completion time or make use of newer
technology and track eye movement or other body reactions. A big issue is the choice
of appropriate subjects. Students, while convenient, often lack the experience needed
to answer the questions. Therefore they are often not adequate representation choices
for the population tested. Professionals of the tested field would be optimal but this
raises the question how to engage them, since their time and motivation to participate
in surveys might be limited.

When testing several approaches, another issue is the identification of benchmarks to
compare the collected data [DPSKO07]. Standardisation of both the design format and
the methodology used to conduct and analyse the survey is important as well.

2.5. Regression Models 11

2.5 Regression Models

Regression is used to predict values from data items or to study trends in the data. We
use regression to study trends in the answers our subjects provided in the survey. In
its simplest form, we have a set of pairs (xi, yi) in a dataset and we want to establish
the dependence between y and x, so that we can predict values of y for new values of
x. We refer to xi as explanatory variables and yi as dependent variable [Joh11].

2.5.1 Logistic Regression and Negative Binomial Regression

Linear regression is a very important method of data analysis [OO18]. It serves the
purpose of determining model parameters, model fitting, assessing the importance of
influencing factors and prediction.

When using linear regression, we assume that the dependent variable y is obtained
by evaluating a linear function of the explanatory variables and adding a normally
distributed random variable [Joh11]. The random variable has zero mean, because we
can’t predict its value. The factor 3 is a vector of weights, which we are to estimate.
tells us how much influence a change in the independent variable x has on the dependent
variable y.

Geometrically [OO18] the pairs of data form a scatter plot in the plane. During a
regression, we draw a line through the scatter plot, so that this line has the best fit.
The line is also referred to as the regression line.

Logistic regression is another regression model, where y can take the values of 0 or
1 [OO18]. This means logistic regression can be used to perform regression over a
binary dependent variable [Cox58]. The observations on the dependent variable would
take one of two possible forms, “success” or “failure”, or put differently “true” or “false”.

The negative binomial regression provides a mean to model over-dispersed count
data [ZKJO08]. The influence of the independent variable x on the dependent y is as-
sumed to be a negative binomial distribution.

To interpret the strength of correlation between the dependent variable y and a signif-
icant independent variable x, we make use of the odds ratio [Szul0]. The odds ratio
says that two events are independent, if and only if the odds ratio between x and y is
exactly one. An odds ratio lower than one means that an increase in x decreases y. An
odds ratio higher than one means that an increase in x increases y as well. The increase
can be established by subtracting one from the odds ratio. When multiplied with 100,
we obtain the percentage y increases or decreases when x increases by one.

2.6 Summary

In this section we explained what variable software is and described the two most
used approaches to implement it: annotation-based and composition-based. In this
thesis we focus on the annotation-based approach, implemented with the C preprocessor

12 2. Background

CPP, that is described in Section 2.1.1. We presented the variability-aware code smell
Annotation Bundle, and briefly described its non-variable counterparts. We discussed
metrics used to detect variability-aware code smells that we use.

Program comprehension was explained. The three models of program comprehension
(top-down, bottom-up and integrated) were presented. We pointed out that since pro-
gram comprehension is an internal process, measuring it isn’t straightforward. We pre-
sented four possible approaches to indirectly measure software comprehension through
the use of self-assessments, tasks, think-aloud protocols and metrics. We used metrics,
tasks and self-assessments to design our survey.

In Section 2.4 we discussed how to design and conduct an online survey. The four
common design errors (coverage, sampling, non-response and measurement) were pre-
sented. We explained the benefits and costs for the participant of a survey and how the
benefits can be increased, while the costs decrease. At last, we discussed the difficulties
of designing surveys with program comprehension in mind.

In the final section we explained how regression models can be used to interpret data.
Regression helps finding trends in the data and make predictions based on these trends.
In this thesis we use logistic regression for boolean values and linear regression for
everything else, thus these two regression models are explained.

3. Methodology

In this chapter we discuss how we selected the code examples and questions for our
survey. We also explain how we selected our subjects. Finally we present our research
questions and detail how the survey questions help answering them.

3.1 Survey in a Nutshell

This section gives an overview of the important aspects of our survey. It serves as a
quick overview of the survey design.

Objective: We wanted to compare whether code smell metrics adequately reflect the
objective and subjective program comprehension of experienced developers. To test
this, we developed a survey and distributed it to open source developers.

Subjects: We asked experienced open source developers from several projects from
Github to lend us their expertise. The project selection has been made through con-
sultation of the “The Love/Hate Relationship with the C Preprocessor: An Interview
Study* paper [MKR™15] as well as identifying popular open source projects in C on
Github.

Source code: We selected heavily annotated functions that have been identified in pre-
vious work [FSMS15]. We selected at least one code fragment of each level of smelliness,
to establish a relationship between the smelly code metrics and program comprehen-
sion. We selected a total of five examples and refactored four of them in order to reduce
the amount of annotations. The refactorings had better metrics and could therefore be
used to compare finer grained differences between the functions.

Tasks: The subjects were divided into two groups. Each group has been given a variant
of a questionnaire with different original and refactored code fragments. One code
fragment has been left untouched in both versions as a comparison baseline between
the two groups. For each function, the questionnaire contained questions that tested
actual and subjective program comprehension.

14 3. Methodology

3.2 Goal of the Survey

Both program comprehension with real developers and metrics to measure expected
program comprehension within smelly variable code has been done. However, confirm-
ing whether the metrics properly reflect both the actual and the perceived program
comprehension of the developers has yet to be done. The goal of this thesis is to close
this gap and establish a relationship between the metrics and the experience of real
people. In order to achieve this goal, we defined the following research questions:

RQ1: Do different amounts of preprocessor use affect developer effectiveness during
program comprehension tasks?

RQ2: Do metrics of preprocessor use reflect subjective assessments of code quality?
RQ3: Which reasons do developers mention for poor program comprehension?

To test RQ1 we chose code examples with varying amounts of preprocessor use (see
Section 3.3) and resulting variable smell metrics. The subjects were given compre-
hension tasks to establish whether they understood the example code. Afterwards we
performed regressions (see Section 2.5) to link the correct answers from these questions
to our metrics. The goal of RQ1 is to establish whether varying amounts of preprocessor
use affect the correctness of solving the comprehension tasks.

For RQ2 the developers were asked to give their subjective evaluation of the code
regarding different aspects like understandability and maintainability. To measure their
evaluation we used self-assessment questions, where the subjects evaluated whether the
preprocessor use in the function is adequate and how easy it is to understand, maintain,
expand the code, as well as detect bugs in it. The goal of this research question was to
establish whether the subjective perception of problems in the code matches with the
estimate we gained from our metrics.

In addition to aforementioned quantitative questions, the questionnaire contained a
qualitative part in which subjects could detail why they felt the preprocessor use is not
valid for the function. To answer RQ3 we grouped these answers into categories and
assigned a mood to each answer through open coding. Later we evaluated how often a
specific category would be named and whether the mood of the answer could be linked
to the correctness and the subjective assessment from RQ1 and RQ2. The goal of RQ3
was to establish further reasons for poor program comprehension, that were important
for our subjects when working on the examples.

3.3 Code Examples and Questions

The survey had a total of ten pages, including an introduction and a closing page, as well
as two pages where short context for the code examples was given. One page contained
questions regarding the social background of the subject, such as his age, country and
gender. Additionally we asked how many years of programming experience in general
and specifically in C the subject has. Moreover, the subject was asked to rate their

3.3. Code Examples and Questions 15

Table 3.1: Metrics of used examples

Example 1 2 3 4 5)

Name vim18 vim15 vim13 emacs12 emacsll
Refactored 0 0 1 0 1 0 1 0 1
ABSmell 3.02 72 4 11.78 10.72 586 2.33 6.12 3.88
LOC 21 31 30 84 82 25 26 35 39
LOAC 16 26 12 69 67 21 8 26 19
loacratio 0.76 084 04 082 082 084 031 0.74 0.49
NOFL 2 6 4 12 11 4 2 6 4
NOFC 2 6 5 4 4 4 1 4 3
NONEST 1 6 2 9 7 2 0 4 0
NONEG 0 1 2 0 0 2 1 2 1

general and C programming experiences on a Likert scale ranging from beginner to
expert.

There were a total of five code examples from two text editors. Three of the examples
were from the vim project and two from the emacs project. We chose the initial code
fragments from the SCAM dataset ! of smelly code according to a set of requirements.
The SCAM dataset is a collection of functions and their variability-aware metrics from
different C projects. The metrics for the functions were computed through the tool
SKUNK [FSMS15]. The metrics are shown in Table 3.1. Our requirements for the
selected functions were small size and different values of code smells. Short functions
were needed to ensure the example can be viewed at once on a regular desktop monitor.
Our threshold was 40 LOC, although we used one especially smelly example with 80
LOC. Next, we tried to include examples for every level of smelliness (see Section 2.2).
We selected the code examples vim18, vim15, vim13, emacs12 and emacsl] with the
smelliness levels of R-1, R0, R1, R-1 and RO respectively. In theory examples of same
smelliness should effect similar program comprehension.

We designed two versions of the questionnaire. In each there were three original code
fragments and two that we refactored by reducing the amount of annotations and re-
structuring them. With the refactorings we aimed to improve readability and, thus,
comprehension of the presented code. The refactorings had better smell metrics than
the originals (see Table 3.1). As such we expected the subjects to perform better in
these examples than the subjects who were presented the original code. The complete
order of both original and refactored examples from least smelly to most smelly is the
following: emacs12 refactored, vim18, emacsl1 refactored, vim15 refactored, emacs12
original, emacs11 original, vim15 original, vim13 refactored and vim13 original.

Listing 3.1 and Listing 3.2 show the original and refactored code of example vim15.
The original example uses undisciplined and complex annotations. This was improved

Thttps://www.isf.cs.tu-bs.de/cms /team /schulze/material /scam2015skunk /

16 3. Methodology

in the refactored example. The code functionality and not annotated code were largely
left untouched, though code replication was not avoidable in some refatorings.

Listing 3.1: Vim15 original

char_u =«
fix_fname (fname)

char_u xfname;
{

#ifdef UNIX
return FullName_save (fname, TRUE) ;
#else
if (!vim_isAbsName (fname)
|| strstr ((char x)fname, ”..”) != NULL
|| strstr ((char x)fname, ”7//”) != NULL
ifdef BACKSLASH IN_FILENAME
|| strstr ((char x)fname, ”7\\\\”) != NULL

endif
if defined (MSWIN) || defined (DJGPP)

|| vim_strchr (fname, ’~’) != NULL
endif

)

return FullName_save (fname, FALSE);
fname = vim_strsave (fname) ;

ifdef USE_FNAME CASE
ifdef USELONGFNAME
if (USELONG FNAME)
endif
{
if (fname != NULL)
fname_case (fname, 0);
}

endif

return fname;
#endif
¥

We aimed to keep the number of LOC small in order for the examples to fit on one
screen without scrolling. This is how we ended with four original and three refactored
examples with 21-39 LOC. However, to include one example with a high smelliness rank
we had to resort to a code fragment of over 80 LOC. In our examples varying amounts
of code were annotated. In vim18 76% of all code was annotated. In vim15 83% were
annotated in the original version and 40% in the refactored. For vim13 both the original
and refactored examples had 82% of annotated code. Emacs12 had 84% of annotated

3.3. Code Examples and Questions 17

Listing 3.2: Vim15 refactored

#ifdef UNIX
char_u =«

fix_fname (fname)
char_u xfname;
{

}

#else /x JUNIX x/

return FullName_save (fname, TRUE);

char_u =«
fix_fname (fname)

char_u xfname;
{

int is_rel_name = !vim_isAbsName (fname)
|| strstr ((char x)fname, ”..”) != NULL
|| strstr ((char x)fname, ”//”) != NULL;
ifdef BACKSLASH IN_FILENAME

is_rel_name = is_rel_name || strstr((char x)fname, ”\\\\”)
|—= NULL;
endif
if defined (MSWIN) || defined (DJGPP)
is_rel_name = is_rel_name || vim_strchr(fname, '~’) != NULL
endif

if (is_rel_name)
return FullName_save (fname, FALSE);

fname = vim_strsave (fname) ;

ifdef USE_FNAME _CASE

if !defined (USELONGFNAME) || USELONGFNAME
if (fname != NULL)
fname_case (fname, 0);

endif

endif

return fname;

}
H#endif

18 3. Methodology

1. Which of the following statements is true?

. If rEAT_AuTocMD is defined, the function will only return FALSE if is_autocmd blocked ()
" returns >0,

. If rEAT aurocup is not defined, the function will only return FALSE if
~ is_autoecmd_blocked () returns >0.

) The function can also return false if FEAT_auTocMp is undefined.
© None of the above is true.
= 1 don't know

Figure 3.1: The first question of example vim18

code in the original and 31% in the refactored version. The emacsl1 versions had 74%
of annotated code in the original and 48% in the refactored example.

To have a comparison between the two questionnaires, we left the original code of vim18
in both versions as baseline. By comparing the results of the questions for vim18, we
wanted to see whether there are considerable differences between the demographics and
skill levels of the two questionnaire versions.

The other four code fragments were presented in either the original or the refactored
version. Specifically, questionnaire 1 had the original code for vim15 and emacs12 and
the refactored code for vim13 and emacsl1. The second questionnaire had the original
code for vim13 and emacsll and the refactored code for viml5 and emacs12. The
examples were given in the same order.

We aimed to provide both quantitative and qualitative questions to ensure that the
subjects provide measurable expertise on the one hand but also are able to provide
their own thoughts on the other. Additionally we asked for feedback at the end of the
survey.

Each example had six questions. The first Figure 3.1 presented several statements of
which one could be true. The subject was asked to select the true statement.

The second question Figure 3.2 asked the subject to give a valid feature combination
that would lead for a certain line in the code to be executed. The subject had to
understand the use of annotations in order to correctly answer the first two questions.

The third question asked the subject which lines of code they found hardest to com-
prehend. As can be seen in Figure 3.3, the subjects could type in single line numbers

3.4. Subject Selection 19

2. When would the return statement on line 14 be executed?

Choose a combination of conditions that would lead to the desired execution.

[l Never

O Always

[} rEaT EVAL is defined

[reaT_EVAL is undefined

[} FEAT avuTocMD is defined

[FEAT 2yuTocMp is undefined

[is_autoecmd blocked () returns 0
[0 is_autoemd blocked () returns >0
[T don't know

Figure 3.2: The second question of example vim18

or line ranges, separated by commas. The results of this question were used to identify
the least understood lines in the code fragments.

The fourth Figure 3.4 and fifth Figure 3.5 questions belong together and asked the
subject to rate the appropriateness of the preprocessor annotation and, in case they
were found to be inappropriate, how the participant would attempt to fix them.

Finally, the sixth question Figure 3.6 contained four Likert scales that could be used to
rank the example with regard to the difficulty of understanding, maintaining, expanding
and finding bugs in the code. By asking the self-assessment questions (questions three,
four, five and six), we wanted to see the opinion of the subjects regarding annotation
use, general code quality and ease of working with the code. Additionally, we wanted
to compare the comprehension questions with the self-assessment questions, in order to
see whether there is a relation between solving tasks correctly and opinion of the code.

3.4 Subject Selection

In Section 2.4 we established several types of survey errors: coverage, sampling, nonre-
sponse and measurement. In this section, we explain how we tried to minimize these
errors in our survey.

To counteract the coverage error, we first tried to establish the amount of C-developers
around the world and identify a way to contact them. While the popularity of C is high
(e.g. [Spel, [La]), there are no straightforward ways to tell how many C-developers there
are. The first idea was to retrieve this information from popular C/C++ internet portals.
However, the amount of users between several versioning and forum websites highly

20 3. Methodology

3. Which lines of code were hardest to comprehend?
You may enter single lines numbers (e.g. 5) or number ranges (e.g. 1-5). Separate your

answers by commas. Leave the answer empty if there were no lines you found hard to
comprehend.

Figure 3.3: The third question of example vim18

4. Do you consider the use of preprocessor annotations in the example appropriate?

Preprocessor annotations are directives like #if and #ifdef.

@ Yes

 No, because

Figure 3.4: The fourth question of example vim18

3.4. Subject Selection

21

5. If you answered “No” in the previous question, how would you attempt to

improve the annotations?

Figure 3.5: The fifth question of example vim18

6. Please rate the presented code regarding the following questions:

moderately moderately
wery hard hard easy wvery easy
How easy was it to understand this code? . .

How easy would it be to maintain this code (e.g., to . A A A
change code or fix bugs)?

How easy would it be to extend this code?

How easy would it be to detect bugs in this code?

Figure 3.6: The sixth question of example vim18

22 3. Methodology

fluctuates. Additionally those numbers ignore the distinction between experienced and
inexperienced developers as well as people who are only interested in the community
but do not themselves develop in C. So far the most convincing estimate of the number
of C developers in the world has been 1.9 million [Kaz]. We decided to rely on this
estimate because it provides a good population size. With a 95% confidence level and
a 5% margin of error the sample size would have to be 385. We decided that this is
a good population size, because the estimate is high. While keeping the confidence
level at 95%, this estimate already provides the highest sample size (e.g. even with a
population size of 19 million the sample size would still stay the same).

To contact developers we selected popular open-source C-projects with a big following.
Most of the projects were taken from the study of Liebig et al. [LALT10], the rest has
been selected from the trending C projects on Github in October 2018. The projects
were analysed to obtain the author names and e-mail addresses from the commits. The
tool we used to perform this analysis was only able to access public e-mail addresses
(i.e. not those that are hidden behind the Github e-mail anonymiser). As we conduct
a scientific study with an open access publication, we believe our process to conform to
both the German law regarding unsolicited e-mails [dej| as well as Githubs terms and
conditions regarding e-mail address scrapping.

We selected a number of different projects to reduce the coverage error, as well as the
sampling error. As such, we expanded our search criteria to include every developer in
the last 10 years. We e-mailed 7791 developers. With a total of 544 finished and 1117
total questionnaires, the response rate was 14%.

To ensure a decent number of developers participates in our survey, we made it eas-
ily accessible. The online survey was hosted on the survey site of the University of
Magdeburg (befragungen.ovgu.de). The site was chosen because it provided all neces-
sary features to design and distribute the survey. The survey was accessible through a
personal link distributed by e-mail in the time between the 9th December and the 31st
January.

It was important to us to provide anonymity for our subjects, because we wanted them
to be assured that their data will not be used outside of this survey. The hosting site
provided several ways to ensure the anonymity of the subjects. First of all, the serial
numbers provided in the e-mails did not match those that would later be in the finished
dataset. As such, we could not track the names of the subjects by comparing the serial
numbers. We did not save any browser data or IP and did not use cookies to save the
progress of the surveys on the machines of our subjects. Finally, although we asked
whether we could contact the subject again for a follow-up interview and the results of
the thesis, the e-mails provided to us in this question form were stored separately to
the datasets.

3.5 Summary

In this chapter the goals of the thesis were defined in the form of research questions. The
research questions ask whether the difference in preprocessor uses affect a) objective

3.5. Summary 23

correctness while performing program comprehension tasks and b) subjective assess-
ments of the difficulty of solving the tasks. Furthermore the third research question
asks which reasons are given for the perceived difficulty.

In the next section we explained which questions we used in the survey to measure pro-
gram comprehension. The first and second questions were meant to measure program
comprehension through solving tasks on the examples. The fourth and sixth questions
measured subjective opinions on code quality and ease of understanding and maintain-
ing the code. These opinions were needed to investigate whether the variability-aware
metrics can be used to predict user opinions on the code. The third and fifth ques-
tions, as well as the qualitative part of question four were used to find reasons for poor
program comprehension. The reasons were extracted through open coding.

Next we presented the variability-aware metrics for our examples. The examples origi-
nated from two open-source text editors written in C: vim and emacs. We selected five
examples with varying levels of annotations. We refactored four of the examples by sim-
plifying the annotations in the code, in order to investigate whether simpler annotations
affect the correctness of task solving and assessments of code quality. Variability-aware
metrics were automatically computed for all nine tasks.

In Section 3.4 we explained how we chose our target group. We went from an estimate of
1.9 million C-developers in the world and established that 385 participants were needed
to represent this group. Since our initial method didn’t yield enough participants, we
opted to contact as many developers as we could in the hope to get enough willing
subjects.

24

3. Methodology

4. Survey Results

In this chapter we present the results of the survey. First we evaluate the subject
demographics. Then we compare how the baseline example vim18 was solved in the
two groups of subjects. Afterwards we answer the research questions by evaluating the
survey answers and performing regressions on the data.

4.1 Subject Group Comparison

In this section we compare our two groups of subjects. The first group answered ques-
tionnaire 1 and the second group questionnaire 2. First we evaluate the self-provided
informations of our subjects. Then we compare the results of solving the baseline ex-
ample vim18 in the two groups.

4.1.1 Subject Demographics

The survey was completed 544 times, of which 273 were questionnaire 1 and 271 were
questionnaire 2. In this section a comparison of the subjects between the two question-
naire variants is made.

Figure 4.1 shows the age distribution of the subjects in form of a boxplot. For ques-
tionnaire 1 most of the subjects are aged between 32 and 42 years. For questionnaire
2 most of the subjects are aged between 27 and 42 years. The median for both groups
lies at 37 and the mean at 36. There is more variety in the ages of the subjects of
questionnaire 1 compared to questionnaire 2. The combined boxplot can be seen in
Figure 4.2. The majority of the subjects lies between ages 27 and 42, with a median of
37 and a mean of 36.

In Figure 4.3 we see the gender distribution of the participants. A total of 502 are male,
253 in questionnaire 1 and 249 in questionnaire 2. Three participants of questionnaire 1
and eight of questionnaire 2 are female, making a total of eleven female developers.

26

4. Survey Results

Age

Figure 4.1:

Age Boxplot (groups)

60
|

40

30
|

Subject group

Boxplot of the age first (left) and second (right) subject groups

4.1.

Subject Group Comparison

27

Age Boxplot
(combined)

80
\

Age
40

30
|

20
|

Figure 4.2: Boxplot of the age of both subject groups combined

28 4. Survey Results

(=]

8 _

u

(=]

g |

<

o

8 4

«©

o

8 4

™

o

g 4

| —— |)
o - |
Female Male Other Prefer not to tell

Figure 4.3: Gender of both subject groups combined

Table 4.1: Subjects’ roles in projects
Roles in projects Developer Team Manager Project Manager QA
Questionnaire 1 263 7 63 43
Questionnaire 2 258 72 61 41

One participant of questionnaire 1 and five in questionnaire 2 selected "Other”. A total
of 25 people preferred not to tell us their gender, 16 in questionnaire 1 and nine in
questionnaire 2.

The roles our subjects assumed in projects are presented in Table 4.1. Most of our
subjects had the role of a developer in their projects. Additionally, 28% of subjects
in questionnaire 1 and 26% in questionnaire 2 were team managers and 23% in both
questionnaires were project managers. In the first questionnaire, 16% and in the second
15% of the subjects worked in quality assurance. The two groups of subjects had very
similar roles distribution.

Figure 4.4 shows the general programming experience and the C programming expe-
rience of both groups of subjects. Most of the subjects who answered questionnaire 1
had between eleven and 25 years of general programming experience. The subjects of
questionnaire 2 had mostly between 12 and 25 years of general programming experience.
Both the mean and the median of both groups lie at 20 years of general programming

4.1. Subject Group Comparison 29

Development
and C Experience Boxplot (groups)

20 30 40

Experience inyears

10

DevExp1 DevExp2 CExp1 CExp2

Subject group
Figure 4.4: Boxplot of the general and C programming experience

experience. The first group had slightly more variety than the second. Most subjects
of both groups had between eight and 20 years of C programming experience. The
median and the mean of both groups are 15. The comparison of years of programming
experience shows almost no differences between the two groups.

In Table 4.2 we see two logistic regression models with the dependent variables correct-
ness in the first and second comprehension tasks. The regression models fail to establish
any correlation between the subject demographics and the correctness of solved tasks.

In Table 4.3 we see the logistic regression of the first subjective assessment task. In
this task, subjects rated the annotation use in the example as either appropriate or
not. The independent variables used in the regression are age, gender, role in project
(developer, team manager, project manager, quality assurance), experience in general
programming (i.e. regardless of programming language) and C programming and per-
sonal rank of general and C programming (ranging from beginner to expert). The
significant (p <0.05) correlations are the role of a team manager, the experience in
general programming as well as C programming. They all have a negative effect on
whether a subject would rate the annotations as appropriate. Being a team manager
has a negative effect of 25% on rating the annotations as appropriate. A higher expe-
rience in general programming has a negative effect of 19% and in C a negative effect
of 18%. In other words, team managers and more experienced developers generally

30 4. Survey Results

Table 4.2: Regression of the comprehension tasks with the independent variables age,
gender, roles in projects, general and C programming experience and subjective assess-
ment of general and C programming skills

Correctness Task 1 Correctness Task 2

Coefficient OR Pr (>]z|) | Coefficient OR Pr (>|z|)
Age 0 1 0.85 0 1 0.91
Gender 0.11 1.11 043 0.07 1.07 0.52
Developer 0.11 1.11 0.70 0.06 1.06 0.80
Team Mgr. 0.01 1.01 0.96 0.01 1.01 0.93
Prj. Mgr. -0.09 0.92 0.54 -0.05 0.95 0.68
QA 0.11 1.12 047 0.14 1.15 0.28
Dev. Exp. -0.01 0.99 0.57 0 1 0.92
C Exp. 0.01 1.01 0.33 0 1 0.96
Dev. Rank 0.04 1.04 0.69 0.09 1.09 0.30
C Rank 0.10 1.11 0.25 0.12 1.13 0.11
(Intercept) 0.47 1.60 0.38 -0.60 0.55 0.19

Signif. codes: “***" (0.001 “**’ 0.01 “*’ 0.05 “.” 0.1

rated the use of annotations as less appropriate than subjects working in other roles
and developers with less experience.

The negative binomial regression of the second subjective assessment task is split into
two tables Table 4.4 and Table 4.5, with the criteria understanding and maintaining
in the first table and extending and finding bugs in the second. The only significant
correlation that could be established is that being a team manager influences your
opinion on the ease of finding bugs in the example code in a negative way. With p <
0.05 the negative influence was 8%.

4.1.2 Baseline Comparison

One of the examples was present in both of the questionnaires in order to compare the
skill set of both subject groups between each other. In this section we want to compare
the demographics of our subjects by evaluating their performance while solving the
baseline example vim18. This way we ensure that the results of both questionnaires are
comparable with each other and that the subjects are similarly skilled.

The first group (subjects who worked on questionnaire 1) solved the first task 239 times
correctly, 31 times incorrectly and chose the “I don’t know” answer three times. The
second group solved it 238 times correct and 27 times incorrect, with six people choosing
the “I don’t know” answer. The second task was solved correctly by the first group 172
times, with further 91 subjects solving it partially correct and ten subjects solving it
wrong. The second group solved the second task correctly 163 times, 98 more subjects
solved it partially right and ten wrong.

4.1.

Subject Group Comparison

31

Table 4.3: Regression of the first subjective assessment task with the independent
variables age, gender, roles in projects, general and C programming experience and
subjective assessment of general and C programming skills

Appropriateness

Coefficient OR Pr (>]z|)
Age 0.02 1.02 0.07 .
Gender -0.14 0.87 0.17
Developer 0.30 1.35 0.19
Team Mgr. -0.29 0.75 0.01 **
Prj. Mgr. 0.08 1.08 0.5
QA 0.03 1.03 0.82
Dev. Exp. -0.002 1 0.86
C Exp. -0.005 1 0.69
Dev. Rank -0.21 0.81 0.02 *
C Rank -0.19 0.82 0.01 *
(Intercept) 1.17 3.21 0.01 **

Signif. codes: “***" (0.001 “**’ 0.01 *’ 0.05 *.” 0.1

Table 4.4: Regression of the second subjective assessment task (understanding and
maintaining) with the independent variables age, gender, roles in projects, general and
C programming experience and subjective assessment of general and C programming

skills

Understand Maintain

Coefficient OR Pr (>]z|) Coefficient OR Pr (>]z|)
Age -0.004 1.00 0.1 -0.003 1 0.23
Gender 0.04 1.04 0.19 0.02 1.03 0.44
Developer 0.06 1.06 0.39 0.03 1.03 0.67
Team Mgr. -0.05 0.95 0.16 -0.06 0.94 0.08.
Prj. Mer. 0.01 1.01 0.76 -0.001 1097
QA 0.01 1.01 0.72 0.002 1 0.95
Dev. Exp. 0.002 1 0.84 0.001 1 0.72
C Exp. 0.003 1 0.50 0.004 1 0.23
Dev. Rank 0.02 1.03 0.32 -0.00006 1 1.00
C Rank -0.01 0.99 0.79 0.02 1.02 0.46
(Intercept) 0.74 2.09 1.41e-11 *** | (.83 2.29 1.87e-09 ***

Signif. codes: “*** (0.001 “**’ 0.01 “*’ 0.05 *.” 0.1

32 4. Survey Results

Table 4.5: Regression of the second subjective assessment task (extending and detecting
bugs) with the independent variables age, gender, roles in projects, general and C
programming experience and subjective assessment of general and C programming skills

Extend Detect Bugs

Coefficient OR Pr (>]z|) Coeflicient OR Pr (>z|)
Age -0.001 1 0.63 -0.005 1 0.11
Gender 0.01 1.01 0.71 0.03 1.03 0.28
Developer 0.02 1.02 0.78 0.03 1.03 0.63
Team Mgr. -0.05 0.95 0.18 -0.08 0.92 0.0197 *
Prj. Mgr. -0.004 1 0.91 0.01 1.01 0.71
QA 0.01 1.01 0.72 -0.01 0.99 0.77
Dev. Exp. 0.00001 1 1.00 0.002 1 0.66
C Exp. 0.003 1 0.40 0.003 1 0.35
Dev. Rank 0.01 1.01 0.67 0.01 1.01 0.60
C Rank 0.01 1.01 0.83 0.02 1.02 0.37
(Intercept) 0.79 2.19 2.69e-08 *** | (.82 2.26 3.41e-09 *H*

Signif. codes: “*** (0.001 “**’ 0.01 *’ 0.05 *.” 0.1

Table 4.6: Subjective question 2 answers of group 1 and 2 for vim18

Group 1 Group 2

very hard hard easy very easy | very hard hard easy very easy
Understand 10 9 134 33| 10 96 131 34
Maintain 32 123 105 13 | 33 115 97 26
Extend 29 129 97 18 | 25 128 91 27
Detect Bugs 48 149 64 12 | 38 137 76 20

When answering the subjective assessments, the first group found the annotation use
in vim18 appropriate 126 times and inappropriate 147, while the second group found
them appropriate 146 times and inappropriate 125 times.

In Table 4.6 we see the answers both groups provided for the second subjective task.
The ratings of understand, maintain and detect bugs are in the same order in both
groups. The highest rated categories in extend were hard and easy for both groups, the
third highest for the first group was very hard and for the second group very easy. The
differences in the ratings are small.

In summary, it can be said that while there are slight differences between the subject
groups of the two questionnaires, they are small enough to be able to compare between
them. Both groups have similar subject counts. The first task was solved correctly by
88% of each group. The second task was solved correctly by 63% of the first group and
60% of the second group. Furthermore, the subjective rating of the baseline example
according to the four criteria were mostly in the same order between the groups, with
the only difference being in the third and fourth category of expanding. The biggest
difference is found in the question whether the annotation use is appropriate, as the

4.2. Answering the Research Questions 33

Table 4.7: Correctness task 1
right wrong Don‘t know

vim18 477 58 9
vim1b 267 5 1
vim15-r 252 14 5
vim13 82 142 47
vim13-r 84 162 27
emacsl?2 233 47 3
emacsl2-r 218 47 6
emacsll 223 25 23
emacsll-r 227 31 15

first group mostly answered no and the second yes. Still the difference between the
answers were only 21 votes (8% of the group size).

4.2 Answering the Research Questions

4.2.1 RQ1l: Do Different Amounts of Preprocessor Use Af-
fect Developer Effectiveness During Program Compre-
hension Tasks?

The first research question asked whether the different amounts of preprocessor di-
rectives affect developer effectiveness while solving program comprehension tasks. In
order to answer this question, we designed two tasks that our subjects answered for five
different code examples.

The first task gave a number of statements and the subjects had to choose the correct
one. Only one answer per question was possible. The results are presented in Figure 4.5
and the raw numbers in Section 4.2.1.

Vim18, the baseline example, had double the amount of participants of the other ex-
amples, resulting in a higher amount of answers. Vim15 and vim15 refactored were
the only original example where the subjects answered over 90% correctly. The most
problematic original example was vim13 with 142 wrong and 47“I don’t know” answers.
Vim13 refactored performed similarly poor as its original, with 162 wrong and 27 escape
answers. Both emacs examples had a good solved rate. The refactored emacs examples
also performed similarly well to their originals.

The second task asked the subject to provide a feature configuration that will trigger
the execution of a specific line of code. The answers were of the form "Feature X is
defined” and "Feature X is undefined”, as well as the possibility to select that there’s no
possible configuration or that all configurations lead to the execution. Additionally an
escape answer "I don’t know” was given. The answers are presented in Figure 4.6, their
numbers in Section 4.2.1. Since the escape answer wasn’t unique, i.e. it was possible

4. Survey Results

Comprehension Task 1

100.00%
90.00% Don't know
80.00% M wrong
mright
10.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%
&
s

Figure 4.5: Correctness of the first comprehension task

4.2. Answering the Research Questions 35

Table 4.8: Correctness task 2
right partially right wrong

vim18 300 189 20
vim1b 137 127 9
vim15-r 117 143 11
vim13 49 176 46
vim13-r 53 191 29
emacs12 236 31 6
emacsl2-r 210 47 14
emacsl1 203 49 19
emacsllr 180 64 29

to select it alongside with other answers, it is not shown. We differentiate between full
correctness, partial correctness and wrong answers. If for example the correct answer
for an example would have been features X && Y, then only selecting those two features
(and nothing else) would have given full correctness, while selecting either one of these
(regardless of other selections) would give partial correctness.

With the exception of vim13, the original examples all had at least 50% full and over
80% partial correctness. Notable are the two emacs examples with 236 (86%) right
answers for emacs12 and 203 (75%) for emacs11. Vim13 had 18% right and 18% wrong
answers (the rest being partially correct). The emacs examples had the highest rate
of right answers. The refactored examples of vim15, emacs12 and emacsl1 performed
slightly worse than their original counterparts. Vim13 refactored performed slightly
better than vim13. Emacsl12 had the largest amount of right answers amongst the
refactored examples with 210 (77%) and vim13 the smallest with 53 (18%).

In order to see which metrics influence the correctness of the first task, we performed a
logistic regression analysis in R. The results are depicted in Table 4.9. The significant
independent variables with a p-value of <0.1% are NOFL, NONEST, NONEG and
log2loc. With a p-value of <1% the independent variable is the ratio between annotated
and not annotated code, and with a p-value of <5% the NOFC metric. NOFL has a
negative influence on the correctness. If NOFL increases by one, the correctness is
expected to decrease by 99%. The other significant variables have a positive effect on
correctness. The largest impact comes from log2log with 40280183% improvement of
the correctness if log2loc increases by one, and from loacratio, where an increase by one
would mean a 157777% increase in correctness. The increase in NONEST leads to an
increase by 681%, NONEG to an increase of 357% and NOFC to an increase of 39%.

The logistic regression of correctness of the second task is depicted in Table 4.9 as well.
Significant independent variables with p <0.1% are NOFC, NONEG and loacratio.
With p <1% NOFL and with p <56% NONEST and log2loc. NOFL and NOFC have a
negative effect on correctness of the second task with a decrease of 77% in correctness
when NOFL increases by one and a decrease of 54% when NOFC increases by one.
From the other significant variables, loacratio has the highest positive impact, with a

36

4. Survey Results

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Comprehension Task 2
wrang
W partially right
mright
g {;, '*;” 5

2 vl c;;‘* "b "b'\ 2

Figure 4.6: Correctness of the second comprehension task

4.2. Answering the Research Questions 37

Table 4.9: Regression of the dependent variables correctness of the comprehension task,
showing coefficient, odds ratio, p-values and coded significance

Correctness Task 1 Correctness Task 2

Coefficient OR Pr (>]z]) Coefficient OR Pr (>|z|)
NOFL -4.49 0.01 3.11E-10 *** | -1.46 0.23 0.00 **
NOFC 0.33 1.39 4.87TE-02 * -0.77 0.46 3.59E-07 ***
NONEST 2.05 7.81 2.44E-09 *** | 0.69 1.99 0.01 *
NONEG 1.52 4.57 6.75E-05 *** | 1.39 4.02 2.55E-05 ***
loacratio 7.36 1578.77 7.62E-03 ** | 9.69 16140.71 0.0002 ***
log2loc 12.91 402801.84 1.31E-08 *** | 3.73 41.51 0.02 *
functions 0.82 2.27 0.44 ** 1.84 6.28 0.10
(Intercept) -55.9 0 8.86E-08 *** | -20.54 0 0.01 *

Signif. codes: “*** 0.001 “**’ 0.01 “** 0.05 *.” 0.1
Table 4.10: Subjective assessment question 1

increase of correctness by 16114000%. Log2loc effects an increase by 450%, NONEG
by 302% and NONEST by 99%.

We conclude that, while the regression analysis of the two comprehension tasks indicates
that variability-aware metrics affect correctness when solving comprehension tasks, the
high numbers of their influence sound implausible. Therefore the data we collected does
not provide a good base for establishing correlations.

4.2.2 RQ2: Do Metrics of Preprocessor Use Reflect Subjective
Assessments of Code Quality?

The second research question asks whether the metrics of preprocessor use reflect the
subjective assessments of code quality and understanding of the subjects. We asked
two subjective assessment questions to answer this question.

The first subjective assessment question was whether the subject considers the an-
notation use in the example appropriate. The results are shown in Figure 4.7 and
Section 4.2.2.

For vim18 half the subjects found the annotation to be appropriate, while the other half
found them inappropriate. The other two original vim examples had a lower acceptance
rate for annotation use. In vim13 only 25% found the annotations appropriate. In the
refactored vim examples, the subjects rated the annotations as being more appropriate.
In the original emacs examples, the acceptance rate goes up, with emacsl2 having
68% subjects in favour of the annotations and in emacsll 70%. The highest rating
annotation use received was in the refactored emacsl2 example with 82% who found
the annotation use appropriate. Emacs11 refactored was interesting insofar that it was
the only refactored example that was rated slightly worse than its original.

4. Survey Results

Self-assessment 1: Are the annotations appropriate?
100.00%
90.00% No
80.00% BYes
70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00% I
0.00%

§§§L§§&e@ﬁﬁfé’»

Figure 4.7: Appropriateness of the preprocessor use in percent

4.2. Answering the Research Questions 39

Table 4.11: Regression appropriateness of annotation use

Appropriateness

Coefficient OR Pr (>]z|)
NOFL -0.33 0.72 0.43
NOFC -0.03 0.97 0.80
NONEST -0.07 0.93 0.75
NONEG 0.36 1.44 0.20
loacratio -3.21 0.04 0.15
log2loc 1.08 2.94 0.44
functions -1.66 0.19 0.08.
(Intercept) 1.06 2.89 0.88

Signif. codes: “***’ 0.001 “**’ 0.01 “**’ 0.05 *.” 0.1

To evaluate the significance of variability-aware metrics, we performed a logistic regres-
sion on the results of the first subjective assessment. The regression model failed to
establish a strong correlation between the metrics and whether the subject would rate
the annotations as appropriate or not. A slight correlation, with p <10%, can be seen
with the number of functions. While this could mean that participants are 81% less
likely to find the use of annotations appropriate when only one function is defined, this
correlation is not significant enough to say this with certainty.

The second subjective assessment question was to rate the code fragment regarding
four criteria: the ease of understanding, maintaining, extending and finding bugs in the
code. The possible answers were very hard, hard, easy and very easy. The results of
the examples are presented in Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11. The
numbers are presented in Section 4.2.2.

The perception of how easy understanding the code was (see Figure 4.8), was mixed
between hard and easy for both vim18 and vim15 original examples. For vim18 most
answers leaned towards the code being easy, and for vim15 hard. Vim13 showed a trend
to being harder to understand with most subjects rating it very hard, and hard. Both
emacs examples showed a trend to being easier to understand. Emacsl12 was rated
mostly easy and very easy. Emacsl1l was mixed between easy, hard (67) and very easy

(49).

For the ease of code maintenance (see Figure 4.9), vim18’s trend shifted towards being
hard to understand with 56% rating it either hard (44%) or very hard (12%). Still, 37%
rated vim18 easy to understand. Vim13’s trends stay the same, although the amount
of subjects rating it very hard increases by 18% compared to understanding.

Extending the code (see Figure 4.10) of the original vim18 example was described as
a mix of hard (257) and easy (188), followed by wery hard (54) and very easy (45).
Vim15 has been rated as easy to maintain by 112 subjects, hard by 97, very hard by 50
and very easy by 14. Vim13 was mostly rated very hard (138) and hard (94), followed
by easy (31) and very easy (eight). For emacsl12 the extension ease goes up with 138

40 4. Survey Results

Table 4.12: Subjective assessment question 2 (original examples)
very hard hard easy very easy

Understand viml8 20 192 265 67
vim1b 19 128 109 17
vim13 124 109 34 4
emacsl2 2 21 157 93
emacsll 11 67 144 49
Maintain vim18 65 238 202 39
vimlb 47 121 95 10
vim13 149 96 19 7
emacsl2 3 31 150 89
emacsll 15 69 144 43
Extend vim18 54 257 188 45
vim15 50 97 112 14
vim13 138 94 31 8
emacs12 6 44 138 85
emacsll 21 64 139 47
Detect Bugs viml8 86 286 140 32
vim1b 54 139 73 7
vim13 152 92 21 6
emacsl2 8 49 141 75
emacsll 20 89 121 41

subjects having rated it easy, 75 very easy, 44 hard and six very hard. Emacsll was
rated easy 139 times, hard 64 times, very easy 47 times and very hard 21 times.

The bug detection (see Figure 4.11) in vim18 was rated to be harder than the other
criteria, with 68% rating it hard (53%) or very hard (15%). The amount of subjects
rating it very easy was half of that of understanding. Vim15 was rated mixed with hard
being the largest category with 51%, with easy following with 27%. Vim13 was highest
rated very hard and hard. Emacsl12 was rated comparably to the extending criteria.
Emacs11 shows an increase in hard answers in favour of easy but otherwise keeps its
trends.

The refactored vim15 example was perceived mixed, leaning towards easy, then hard.
Like its original, vim13 refactored showed a trend to being hard to understand, although
in the refactored version the hard rating was higher voted than very hard. Emacsl2
refactored was rated overall positively with most votes in very easy and easy. Finally,
emacsll was mixed rated but with a very high (53%) easy amount, followed by hard
(28%).

The ease of performing maintenance and the ease of extending the code were rated
slightly worse than understanding. However, the trends from understanding are largely
still present. The only bigger difference is that vim13’s largest category for maintaining
is very hard and the second largest hard.

4.2. Answering the Research Questions 41

Table 4.13: Subjective assessment question 2 (refactored examples)
very hard hard easy very easy

Understand viml15-r 20 96 130 25
vim13-r 103 121 44 5
emacsl2-r 6 16 110 139
emacsll-r 9 76 146 42
Maintain viml5-r 36 88 123 24
vim13-r 132 105 33 3
emacsl2-r 6 23 119 123
emacsll-r 18 87 131 37
Extend vim15-r 27 93 124 27
vim13-r 131 89 48 5
emacsl2-r 8 27 114 122
emacsll-r 20 87 130 36
Detect Bugs viml15-r 43 115 92 21
vim13-r 148 102 18 5)
emacsl2-r 9 31 118 113
emacsll-r 29 96 116 32

Vim15 refactored was mixed between hard and easy for bug detecting, leaning towards
hard. The amount of subjects rating vim15 very hard doubled for the ease of bug
detecting compared to understanding. Vim13 has an even larger trend towards being
hard to work with, with only 8% rating it either easy or very easy. Both emacs examples
keep their trends from previously rated criteria.

The negative binomial regression models for understanding and maintaining are shown
in Table 4.14. The regression for understanding failed to detect any significant inde-
pendent variables. The regression for maintaining only shows a significant correlation
with a p-value of <0.1 for NOFC. It would mean an increase in maintaining difficulty
by 7%, but the significance is not high enough to draw this conclusion.

The negative binomial regression for extending the example code and finding bugs
within it are depicted in Table 4.15. Extending the code is significantly (p <0.05)
influenced by the NOFC metric. The ease of extending the code is expected to sink
by 11% with each increase of NOFC by one. There is a slightly significant (p <0.1)
positive correlation with the NONEG metric with an increase of 19%, which we dismiss
due to the low p value. The regression analysis for the outcome “ease of finding bugs”
failed to find a correlation between the dependent and independent variables.

Through regression analysis we found that metrics largely have no effect on subjective
assessments of code quality on our examples.

42 4. Survey Results

How easy was it to undestand this code?

100.00%
90.00% . l W \ery easy
80.00% W easy
70.00% hard
60.00% very hard
50.00%
40.00%
30.00%
20.00% I
10.00%
L -
: 07 o :

0.008% | -
S
Figure 4.8: Ease of understanding the example code

Table 4.14: Regressions of criteria understanding and maintaining the example code

Understand Maintain

Coefficient OR Pr (>]z]) | Coefficient OR Pr (>|z|)
NOFL -0.14 0.87 0.24 -0.13 0.88 0.28
NOFC -0.05 0.95 0.22 -0.07 0.93 0.10 .
NONEST 0.03 1.03 0.69 0.03 1.03 0.66
NONEG 0.08 1.08 0.35 0.13 1.13 0.16
loacratio 0.28 1.32 0.70 0.43 1.54 0.56
log2loc 0.25 1.29 0.51 0.22 1.24 0.58
functions -0.12 0.89 0.71 -0.03 097 091
(Intercept) 0.44 1.55 0.83 0.32 1.38 0.88

Signif. codes: “*** 0.001 “**’ 0.01 “**’ 0.05 *.” 0.1

4.2. Answering the Research Questions

43

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%

10.00%
0.00% .
]

How easy would it be to maintain this code?

Figure 4.9: Ease of maintaining the example code

W ery easy
N easy

 very hard

Table 4.15: Regressions of criteria extending and finding bugs in the example code

Extend Detect Bugs

Coefficient OR Pr (>]|z|) | Coefficient OR Pr (>|z|)
NOFL -0.17 0.85 0.18 -0.12 0.89 0.33
NOFC -0.12 0.89 0.01 * -0.07 0.94 0.14
NONEST 0.08 1.08 0.31 0.03 1.03 0.63
NONEG 0.18 1.19 0.05. 0.11 1.12 0.21
loacratio 0.94 255 0.22 0.34 1.40 0.64
log2loc 0.29 1.34 047 0.17 1.19 0.66
functions 0.19 1.21 0.57 -0.03 0.97 0.93
(Intercept) -0.58 0.56 0.78 0.52 1.68 0.80

Signif. codes: “*** 0.001 “**’ 0.01 “*** 0.05 *.” 0.1

44 4. Survey Results
How easy would it be to extend this code?
100.00%
90.00% :‘“‘E*“'r easy
easy
80.00% herd
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
N » *C-” o v ;
& & ¢ & &S
é° c@' e$° éo

Figure 4.10: Ease of extending the example code

4.2. Answering the Research Questions

45

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

How easy would it be to detect bugs in this code?

Figure 4.11: Ease of finding bugs in the example code

W ery easy
M gasy

very hard

46 4. Survey Results

4.2.3 RQ3: Which Reasons Do Developers Mention for Poor
Program Comprehension?

The third research question aimed to provide further insight into why the subjects found
the code hard to understand. In order to answer this questions qualitative answers were
evaluated, categorised and their mood was assessed.

Figure 4.12 shows the category distribution between the examples. Viml18’s largest
category was understanding with 121 votes, closely followed by code quality with 110
votes, while complexity received 56. The highest reasons stated for vim1l5 were com-
plexity (87) and understanding (70), with code quality being a distant third (19). For
vim13 understanding was given as the reason 113 times, complexity 87 times and code
quality 32 times. Emacs12’s highest reason was code quality with 45 votes, followed
by complexity with 27 and understanding with 17. Emacsll was rated complex 57
times, 21 times hard to understand and five times having poor code quality. In the
refactored examples, vim15’s reasons were mixed, with 36 votes in complexity, 29 in
understanding and 16 in code quality. Vim13 had 104 votes for code quality, 66 for
understanding and 25 for complexity. Emacs12’s highest rated was complexity with 38
votes, followed by code quality (ten) and understanding (seven). Last but not least,
the refactored emacs11 example was rated by 59 subjects to have poor code quality, 25
subjects found it hard to understand and four objected its complexity.

Following are representative quotes for the three categories (understanding, complexity
and code quality):

Understanding: The style choices are bad for readability. Having a prepro-
cessor conditionally compiled statement effectively in the middle of a com-
pound if makes it hard to tell where the if’s conditional ends.

Complexity: Nested. Too largely scoped.

Code Quality: The preprocessor annotation ifdef FEAT_AUTOCMD affects
a fraction of an expression, which is bad practice.

In qualitative answers the subjects stated further reasons for poor understanding. Some
stated that they found the questions and the provided answers to be ambiguous insofar
that they don’t reflect the code accurately. Additionally there has been critique about
missing context, as the definitions for global variables were not provided and more code
would have been helpful for better understanding.

Often the indentations were named as being a reason for bad understanding. However,
when stating this as reason, subjects would also separate indentations from the code
(i.e.“The code isn’t hard, the indentation is weird”). It is important to note that the
selected software systems, vim and emacs, use different indentation styles that were left

4.2. Answering the Research Questions 47

Self-assessmentl: Reason categories for the "No" answer

140
W understanding

120 complexity
code qualit

100 qualiy

a0

40

20 I I

; 1 m
)) ;
N "G)
&

Ne)
& & & z@,éf?{b g@éf?}

3

Figure 4.12: Categories of reasons provided for poor understanding of the example code

48 4. Survey Results

unaltered for the survey. Therefore the critique regarding indentations did not stem
from code modifications from our site.

We tried to establish a general mood of the given reasons. This was done manually
after reading the reasons. Each reason was assigned a positive, neutral or negative
mood according to the language used and the reasoning itself. Positive mood would be
present e.g. when the subject remarked that in the right context the annotation use
could very well be appropriate or that only with annotations the goal of the code is
achievable. Neutral mood would state that the code could be written better or that
the subject would’ve implemented it differently. Negative mood often used stronger
language and suggested that the code has really bad quality and will inevitable lead to
problems. However, when evaluating the categories and moods, it is important to note
that only those who rated the annotation use as inappropriate are included and that
not everyone who voted “no” gave a reasoning. Following are example quotes for the
three moods (positive, neutral, negative).

Positive: [like to indent preprocessor annotations if they’re nested. I also
don’t like to separate # and the command by spaces, but that’s not really
mappropriate.

Neutral: Seems convoluted, can be written easier

Negative: Using #ifdef inside of functions is bad enough, but using it inside
of expressions as is the case here is very bad style.

Figure 4.13 shows the mood of the “no” answers. Viml18’s reasons were negative 144
times, 98 times neutral and 16 times positive. Vim15’s were positive seven times, neutral
30 times and negative 112 times. Vim13 was positive five times, 27 times neutral and
168 times negative. Emacs12 was rated positive six times, 21 neutral and 54 negative.
Emacs11 was rated positive five times, 33 neutral and 38 negative. For the refactored
examples, vim15 had four positive, 29 neutral and 48 negative reasons. Vim13 had
three negative, 21 neutral and 25 negative answers. Emacsl12 was rated positive two
times, neutral 21 and negative 25. Emacsl]l was rated positive two times, 20 times
neutral and 58 times negative.

We asked the subjects to tell us which lines they found hardest to understand in the
examples. The full table is located in ??. In Listing 4.1, Listing 4.2, Listing 4.3,
Listing 4.4, Listing 4.5, Listing 4.6, Listing 4.7, Listing 4.8 and Listing 4.9 we show the
extracts from our examples containing the hardest lines only. It can be generally noted
that, with the exception of emacsll original, all extracts contain complex #ifdefs.
Often subjects found structures (e.g. ifs) harder to understand if they were interrupted
by #1ifdefs. Most refactored examples show the same code extracts as their originals.
A notable difference is found in vim13 and vim13 refactored, where additionally to the
lines that were hard to understand in the original example, a second problematic code
segment was added in the refactored version.

4.2. Answering the Research Questions 49

Self-assessment 1: Are the annotations appropriate? - Mood of the "No" answer
300

negative
250 neutral
W positive
200
150
100
50
D - | — | — — — —
o) ") % 2 N Y A EN
N N Y & o o
& & & & & & N N >
3 N N - -
& & N h 6@";’ ?J@’g’

Figure 4.13: Mood of reasons provided for poor understanding of the example code

50 4. Survey Results

Listing 4.2: Hardest lines vim15 original

8 if (!vim_isAbsName (fname)

9 || strstr ((char x)fname, ”..”) != NULL
10 || strstr ((char x)fname, ”//”) != NULL
11 # ifdef BACKSLASH IN_FILENAME

12 || strstr ((char x)fname, ”\\\\”) != NULL
13 # endif

14 # if defined (MSWIN) || defined (DJGPP)

15 || vim_strchr (fname, ’~7) != NULL

16 # endif

17)

23 # ifdef USELONGFNAME

24 if (USE_LONG.FNAME)

25 # endif

Listing 4.1: Hardest lines vim18

5 if (p-imsf[0] != NUL)

9 if (exiting

10 # ifdef FEAT AUTOCMD

11 || is_autocmd_blocked ()

12 # endif

13)

14 return FALSE;

16 is_active = call_func_retnr (p_imsf, 0, NULL, FALSE);

RQ3 asked which reasons developers provided for poor program comprehension. The
reasons are that the code examples are hard to read due to the use of annotations and
have a high complexity due to the nesting of annotations. The subjects considered
annotations that break control flow hard to understand. Additionally the code quality
was named to be generally bad in the examples, with design flaws and problematic
indentations.

4.3 Discussion

4.3.1 Demographics Discussion

The regression failed to show significant correlations between the differences in demo-
graphics (age, gender, programming experience, roles in projects, subjective ranking of
own programming experience) and the correctness in solving the comprehension tasks.
We conclude that the demographics have little to no influence to understanding the
code and working on it.

4.3. Discussion 51

Listing 4.3: Hardest lines vim15 refactored

16 int is_rel_name = !vim_isAbsName (fname)

17 || strstr ((char x)fname, ”..”) != NULL

18 || strstr ((char x)fname, ”//”) != NULL

19 # ifdef BACKSLASH IN_FILENAME

20 is_rel_name = is_rel_name || strstr ((char x)fname, ”\\\\”)
I= NULL:

21 # endif

22 # if defined (MSWIN) || defined (DJGPP)

23 is_rel_name = is_rel_name || vim_strchr(fname, ’7’) != NULL;

24 # endif

32 # if !defined (USELONG.FNAME) || USELONGFNAME

Listing 4.4: Hardest lines vim13 original

13 #if defined (FEATAUTOCMD) || defined (FEAT_-CONCEAL)
14 if (ready && (

15 # ifdef FEAT_AUTOCMD

16 has_cursormovedlI ()

17 # endif

18 # if defined (FEATAUTOCMD) && defined (FEAT_-CONCEAL)
19 I

20 # endif

21 # ifdef FEAT CONCEAL

22 curwin—>w_p_cole > 0

23 # endif

24)

25 && !equalpos(last_cursormoved , curwin—>w_cursor)
26 # ifdef FEAT_INS_EXPAND

27 && !pum_visible ()

28 # endif

29)

52 4. Survey Results

Listing 4.5: Hardest lines vim13 refactored

16 int need_update = 0;

17 # ifdef FEAT_AUTOCMD

18 need_update = need_update || has_cursormovedI();

19 # endif

20 # ifdef FEAT_CONCEAL

21 need_update = need_update || (curwin—>w_p_cole > 0);
22 # endif

23 need_update = need_update && !equalpos (

last_cursormoved , curwin—>w_cursor);

24 # ifdef FEAT_INS_EXPAND

25 need_update = need_update && !pum_visible () ;

26 # endif

67 if ((conceal_update_lines

68 && (conceal_old_cursor_line !=
conceal_new_cursor_line

69 || conceal_cursor_line(curwin)))

70 || need_cursor_line_redraw)

Listing 4.6: Hardest lines emacs12 original

4 #if C_CTYPE_.CONSECUTIVE_DIGITS \

5 && C_CTYPE_.CONSECUTIVE_.UPPERCASE &&
C_CTYPE_CONSECUTIVE_ LOWERCASE

6 #if C_CTYPE_ASCII

7 return ((c>= "0’ & c <= "9")

8 | ((c & 70x20) >= "A’ && (¢ & "0x20) <= "F’));

Listing 4.7: Hardest lines emacs12 refactored

1 #if C_CTYPE_CONSECUTIVEDIGITS \
2 && C_CTYPE CONSECUTIVE_UPPERCASE &&
C_CTYPE_CONSECUTIVE_ LOWERCASE

8 return ((c >= "0’ && c <= "9")
9 || ((c & 70x20) >= "A’ && (¢ & "0x20) <= 'F’));

4.3. Discussion 53

Listing 4.8: Hardest lines emacs11 original

13 for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
14 got_one >= 0;

15 got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
16 count4+;

21 for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
22 got_one > 0;

23 got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
24 count-+-+;

25 if (got_one < 0)

26 return —1;

Listing 4.9: Hardest lines emacs11 refactored

11 # if HAVEACLTYPEEXTENDED /+ Mac OS X x/

12 for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
13 got_one >= 0;

14 got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
15 count-4+;

16 # else /+ Linux, FreeBSD x/

17 for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
18 got_one > 0;

19 got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
20 count-+-+;

21 if (got_one < 0)

22 return —1;

23 # endif

54 4. Survey Results

The subjective assessments of use of annotations had correlations with age, being a team
manager and both programming and C experience. It is possible that older subjects are
more used to the way variability was implemented in the shown examples, as new tools
and ways weren’t always available to them. Team managers could be more experienced
with certain programming standards and more interested in clean code that new team
members can understand more easily. The same could be said about programming and
C experiences, since developers with more experience are more likely to have seen more
projects and code and therefore have a better idea how the functionality of the code
could be implemented with a cleaner solution.

The second subjective assessment only had a correlation between maintaining the code
and being a team manager. It is possible that team managers have a better overview
over the time and ease of maintaining code, since they have a reference on how long it
would take the team members to perform a maintenance task.

4.3.2 Notable Examples

When choosing the original examples, we tried to include each of the three smelliness
ranks (R-1: minor smell, RO: medium smell, and R1l: strong smell) at least once.
Vim13 was the example with smelliness rank R1. The refactored example of vim13 still
has the second highest ABSmell. As can be seen in the results, our subjects had the
highest number of problems with both vim13 and vim13 refactored. With 30% each, the
amount of subjects who solved the first task correctly was less than half of that of next
lowest solved (80%). In the second task, less than 20% of the subjects answered with
full correctness in both original and refactored vim13 examples. Notably the partial
correctness is high in both examples (63%-70%). This suggests that while the subjects
didn’t fully understand the functionality of the code, they were able to correctly identify
a part of it. This suggests that working with stronger smelling code requires a higher
time investment. When the developer doesn’t fully understand the code he is working
with, bugs and design flaws can be easier to introduce and harder to fix.

When evaluating the subjective assessments of vim13 and vim13 refactored, one can see
that the annotation use in these examples is far less accepted than in the other examples.
There is a considerate increase of negative comments. However, the reason categories in
the original and refactored vim13 example are different. When in the original example,
subjects would state the impact on understanding as the biggest reason and complexity
as the second biggest, with code quality being a distant third, in the refactored code
quality was named the biggest reason, understanding second and complexity third. It
seems that refactoring the example, while not actually having any direct effect on the
task solving, changed the perception of the root of the problems.

Vim15 and vim15 refactored had the highest amount of correct solutions for the first
task. This is interesting because of two reasons. First, the difference in the metrics
of the original and refactored example is fairly high. For example, vim15 refactored
is closer to the ABSmell of emacsll refactored than vim15 original. Second, vim15’s
metrics are rather similar compared to the other examples. They're usually neither

4.3. Discussion 55

the highest nor lowest, with the exception of the NOFC metric, where the original is
highest and the refactored second highest. A possible explanation could be that because
vim15 was the second example in the questionnaire, the performance of the subjects
was higher due to a higher motivation and having had trained on vim18.

In the second task, however, both vim15 examples perform worse. It is possible that
the question was not formulated clear enough and the subjects had to get used to it.
The subjective assessments of vim15 and vim 15 refactored were mixed. This means
that the subjects did not consider vim15 particularly easy to understand or work with,
despite performing so well in the first task.

All four emacs examples performed very good in both understanding tasks, with emacs12
being slightly better than emacsll. The second task was solved better in the emacs
examples than in the vim examples. This is reflected in the subjective assessment ques-
tions as well, with a high amount of subjects stating that the annotations in these four
examples are appropriate and understanding and maintaining the code would be mostly
easy for emacs12 and emacs12 refactored. Emacs11 is mixed between "easy” and "hard”,
with "easy” always being the highest rated option. The reason emacsl2 is rated better
than emacsll in the rating scales is likely because emacs12 is shorter. The ABSmell
metric would suggest that emacsl2 refactored performed best, followed by emacsll
refactored, with emacs12 and emacsl1 following with a perceivable distance. This is
not the case, the original examples performed slightly better than the refactored ones.
One possible explanation for this is that we altered some code characteristics beyond
the discipline annotations, negatively affecting code comprehension. Especially split-
ting one heavily annotated function into two less annotated could have had a negative
effect, leading to a worse performance of our subjects.

4.3.3 Reasons and Mood

The first category of reasons found for poor annotation use was that they negatively
affect understanding. Examples that have been refactored through us were generally
rated more positive than the originals. This suggests that the discipline of annotations
helps perceiving the code easy to understand.

The complexity of annotations were often linked to nesting of annotations. The exam-
ples in which the use of annotations was perceived as most complex were vim15 and
vim13, with emacsll and vim18 being in the second place. When combining this in-
formation with the hardest lines of the examples, we can see that the annotations used
in vim15 and vim13 were used to combine conditions inside i fs. Although disciplining
the annotations in such 1ifs helps, a different design approach could be beneficial for
reducing perceived complexity.

Code quality was another reason the subjects rated the annotation as inappropriate.
However, the subjects often would separate their concerns about code quality and an-
notation use and view them as different things. The reason for this could be that faulty
indentations, long functions and similar problems in the code are seen as their own

56 4. Survey Results

problems, while annotations are seen as tools to reach a certain goal. So while anno-
tations make it easier to introduce quality problems into the code, they aren’t seen as
being at fault.

Of the subjects who saw the annotation use as not appropriate, most reasons given were
formulated negatively, with the lowest being 50% in emacsl1 original and highest 84%
in vim13 original. It is probable that subjects who chose to critique the annotations
inherently chose a negative tone. The neutral reasons are more interesting, as they
usually stated the subjects preferences in coding or code design and indicated that
while the subject himself wouldn’t write the code like this, annotation use isn’t seen
as critical by him. The least represented category were the positive comments, coming
from subjects who acknowledged that while the annotation use isn’t ideal, it serves a
certain purpose that is likely harder or impossible to reach without them.

The hardest lines of the examples were similar between the original and refactored
examples. They often contained complex #1ifdefs that interrupted the control flow of
the code. Although the refactored examples had fewer subjects rating the annotations
inappropriate, this suggests that disciplining annotations alone does not suffice to make
complex #1ifdefs inside bodies of code well understandable.

4.3.4 Regression Analysis

The correctness of the two comprehension tasks was dependent on most of our defined
metrics. The only metric that had no influence was the number of functions. Surpris-
ingly we found that only NOFL had a negative effect on the correctness of the first
comprehension task and only NOFL and NOFC on the correctness of the second com-
prehension task. The other metrics (NONEST, NONEG, loacratio, log2loc and NOFC
in case of the first task) had a positive effect on the correctness.

A higher number of feature locations leads to a complexer code, where the code flow is
often interrupted, therefore explaining the worse correctness rate. The NOFC metric
positively influencing one comprehension task and negatively the other should be further
examined. NONEST having a positive effect on solving the tasks could be due to
increased concentration when a higher amount of nestings is present, as code has to
be evaluated more carefully, thus more attention has to be paid. The loacratio has a
positive correlation with correctness as well. Code with a higher amount of annotated
lines is more likely to have big blocks of continuous annotated code, as opposed to
single annotated lines throughout the code. Therefore reading these bigger blocks of
annotated code is easier, as it doesn’t break the code flow as much. Last but not least,
the log2loc ratio having a positive effect is surprising, as the example with most lines of
code had by far the lowest correctness. This contradiction suggests that the amount of
examples is too low to gain significant insights through regression analysis. We conclude
that no clear correlation could be established.

It would have been better to choose or construct examples with a gradually increase
of certain metrics as opposed to having most examples having small to moderate code

4.4. Threats to Validity 57

smells and only two with strong code smells. This way we couldn’t track well when the
correctness starts to suffer.

The first subjective assessment task (the question whether the annotation use is appro-
priate) had a correlation with the number of functions in the code. This is probably
due to the increase of complexity that comes with both the introduction of functions
and annotations. When only one is present, it is easier to justify the use. A heavily
annotated function in otherwise not annotated code could be easy to excuse. How-
ever, several heavily annotated functions in a short distance from each other can be too
complex to comfortably be working with.

When performing regressions for the second subjective assessment task (rating the ex-
amples regarding understanding, maintaining, extending and finding bugs), the regres-
sion reached its iteration limit. This means that no clear correlation could be established
for the four criteria. Further interpretation of the regression results have to take this
into account.

The correlations that were found by the regression were NOFC for the ease of main-
taining and extending the code and NONEG for extending the code. The NOFC could
have a negative effect because the developer has to pay more attention on the feature
interactions between the different features referenced by the constants. These results
seem to be consistent with Melo et al. [MBW16]. It is also probable that when ex-
tending code, several variants of the extension have to be written to accommodate all
features, making it harder. NONEG having a positive effect could be due to the relative
ease of handling #ifdef...#else... constructs as opposed to several unconnected
#1fdefs. Since in a negation, only one feature is either present or not, it can’t interact
with other features and the developer perceives extending such code as easier.

4.4 Threats to Validity

In this section we discuss threats to validity of our results. Threats to internal validity
affect the extent to which a result supports a specific claim. Threats to external validity
expresses which results can be generalised.

4.4.1 Internal Validity

The first problem is that, despite our best effort, we could have influenced our subjects
during the survey. For example, the question asked may imply that we critique the
annotation use in the examples. This could lead to the subject thinking about problems
that could arise, negatively influencing his answer.

Some questions were criticised as being too ambiguous, specifically the second compre-
hension and the first subjective assessment questions. The second comprehension task
asked to provide a valid configuration to execute a certain line from the example. It
is possible that wording of the question itself, as well as the provided answers, con-
fused our subjects. The first subjective assessment asked whether the annotation use

58 4. Survey Results

in the example is appropriate. We worded the question purposely vague, to minimise
influencing the subject. However, it is possible that we confused the subjects instead.

The questions of the survey could be too narrow. Most questions only provided quanti-
tative answer possibilities. More qualitative answers would be beneficial to obtain more
nuanced developer feedback. Additionally the second subjective assessment question
(ranking the criteria understanding, maintaining, extending and detecting bugs) was
not based on previously performed tasks but rather the subjects’ instinct. However,
we are confident that the high amount of programming experience lead to an accurate
estimate.

Another problem is that, even though we tried to minimise the completion time of the
survey, it still took 30 minutes to complete. This excluded a number of developers who
were not willing to invest a high amount of time into completing a survey. A shorter
survey with two instead of five examples and more subjects could have provided better
answers.

4.4.2 External Validity

The external validity was controlled through the selection of subjects and code examples
for the survey. The examples were taken from open source projects. They represent
naturally occurring code smells in variable software systems that are still used in prac-
tice.

When performing the survey, we obtained an appropriate amount of responses. Since
our subjects were developers experienced in C programming, we are confident in their
ability to work on C code and assess the quality of previously unacquainted code. The
subjects were split into two groups, so we compared their demographics and perfor-
mance. The differences between the subject groups were negligible, therefore we are
confident that the results of both groups are equally valid.

A problem can be that, when working on hard to understand code, developers are likely
to use tools in order to improve program comprehension. We did not account for this,
though we can not tell how big the influence of this aspect is.

4.5 Summary

In this chapter we presented and discussed the results of our survey. Since we had two
groups of subjects, we started by comparing the two groups. The first group worked on
questionnaire 1, the second one questionnaire 2

The comparison was made through two means. First we compared the demographics
of the two subject groups. We performed logical and negative binomial regressions in
order to establish whether age, gender, roles in projects, programming experience and
subjective ranking of personal programming skills influence correctness of solving tasks
and subjective assessments of annotation quality in the code. The regression analysis
showed no correlation between the demographics and solving accuracy. Being a team

4.5. Summary 59

manager, as well as rating your development and C skills higher, had a correlation to
rating the appropriateness of annotation use. Being a team manager had a negative
influence of 25% on finding the annotation use appropriate. Ranking your own skills
higher in general programming experience or C programming experience had a negative
impact of 19% and 18% respectively. Second, we compared the answers of the baseline
example, vim18, between the two groups. The questions were answered similarly by
both groups. Therefore we concluded that the differences between the two groups are
negligible and their results can be comfortably compared between each other.

In the next section we answered the research questions. The first research question
asked whether different amounts of preprocessor annotations affect effectiveness during
program comprehension tasks. We found that the correctness of solving the comprehen-
sion tasks did vary with different examples. A logistic regression analysis showed that
the metric NOFL has a negative correlation with the correctness of the first compre-
hension task, with a 99% decrease in correctness per new feature location. The metrics
NOFC, NONEST, NONEG, loacratio, log2loc had a positive correlation, with an in-
crease of correctness with the increase of the respective metric. However, the correlation
numbers were too high and therefore not believable.

The second research question asked whether variability-aware metrics have an effect of
subjective assessments of code quality. In order to answer this question we performed a
logistic regression on the question of appropriateness of annotation use and a negative
binomial regression on the four criteria (understand, maintain, extend, detect bugs)
that were subjectively assessed by our subjects. The regression faced similar issues like
the two performed in the previous research question. The logistic regression failed to
establish a correlation, which suggests that the metrics have no effect on how likely the
subjects would rate the annotation use appropriate. The negative binomial regression
only established a correlation between the metric NOFC and the ease of extending
code. With each new feature constant the ease of extending code would decrease by
11%. This means that the metrics mostly have no effect on subjective perception of
code quality.

The third and last research question asked which reasons the subjects would give for
poor program comprehension. To answer this question, we performed open coding on
the qualitative answers our subjects provided. We assigned categories and a mood to
the answers, in order to quantify them. The resulting categories were understanding,
complexity and code quality. Understanding most often would remark bad readability.
Complexity was a reason when the nestings were criticised. Code quality was for reasons
like bad indentations, bad code design and similar. The possible moods were positive,
neutral and negative. Only the subjects who perceived the code or annotation use as
problematic gave reasons on why the code is hard to understand. Therefore most moods
given were negative, although some neutral and even positive moods were present too.
Neutral comments would often state that they see a certain problem with the code,
without further rating it. Positive comments usually remarked that while the subject
has different preferences when writing code, the kind of annotation use presented in the

60 4. Survey Results

example had its place. The subjects additionally stated which lines of code they found
hardest to comprehend. The hardest lines contained #1i fdefs that broke code flow.

Threats to validity were discussed in the next section. Internal threats to validity
could be ambiguous wording of questions, too narrowly asked questions and too few
qualitative answer possibilities. External threats to validity could be the lack of tools
to help program comprehension.

5. Related Work

In this chapter we present related work. Since this thesis is based around the themes
annotation-aware variability and program comprehension, we discuss work on them.

Annotation-Based Variability

The Love/Hate Relationship with the C Preprocessor: An Interview Study[MKR™15]

In this paper interviews with 40 developers were performed and cross-validated with
202 developers from open source projects and previous studies regarding the perception
of the C preprocessor. The results showed that the C preprocessor is widely used in
practice to solve portability and variability problems. While the developers are aware
of the problems, they see no alternatives to the preprocessor and are wary of new
technologies. Preprocessor bugs are seen as easier to introduce, harder to fix and more
critical than other bugs. Most developers see a problem with undisciplined annotations
regarding code maintainability and comprehension.

While this paper mentions variability implementation through the C preprocessor and
its impact on comprehension and maintainability, it didn’t link back to variability-aware
metrics. A relationship between the metrics and developer perception have not been
established. Our work focuses on establishing this relationship between variability-
aware metrics and subjective perception of comprehension and maintainability from
developers.

Do background colors improve program comprehension in the #ifdef hell?[FKA*13]

The thought that developers don’t want to abandon the C preprocessor is continued in
this paper. To circumvent some of the problems C preprocessor annotations introduce,
it is suggested to use background colours to highlight the directives and their code.
The idea is to colour all code guarded by #ifdefs. Nested #ifdefs get their own
colour. The authors performed three controlled experiments with a total of over 70

62 5. Related Work

subjects. The focus of the first and third experiments was on program comprehension
and the focus of the second was on how the subjects use the opportunity to switch
between background colours and preprocessor directives. The first two experiments
were performed on medium-sized software product lines, the third one a large-sized
software product line. The experiments showed that not only do background colours
help with program comprehension, they also scale from medium-sized to large-sized
projects.

The paper worked with both variability and program comprehension but with a focus
on improving the work with preprocessor directives. Code smell metrics weren’t of
importance.

How does the degree of variability affect bug finding?[MBW16]

Melo et al. design and conduct a controlled experiment in order to measure the effect of
variability on debugging variable code. The variability was implemented through CPP.
Three different degrees of variability were defined for the example systems. Speed and
precision of bug finding tasks were measured during the experiment. The speed of find-
ing bugs decreased linearly with each degree of variability, while the effectiveness was
comparably independent from the degree of variability. Identifying the faulty configu-
ration proved to be harder for the subjects than finding the bug in the first place.

This paper controlled the variability of annotation-based software product lines in or-
der to research the effect of differing levels of variability on the correctness and speed
of solving tasks. We expanded the effect of differing levels of variability through self-
assessment questions in order to capture the subjective opinions of our subjects regard-
ing the presented code examples.

Does the discipline of preprocessor annotations matter?: a controlled experiment[SLSA13]

The effect of the discipline of preprocessor annotations on program comprehension was
measured in a controlled experiment. Disciplined annotations align with the structure
of the source code, while undisciplined do not. The subjects performed tasks on code
with either disciplined or undisciplined annotations. Speed and correctness of solving
the tasks were measured. The results suggested that the discipline of annotations have
no effect on program comprehension.

When refactoring our examples, the discipline of annotations was of great importance
for us. The original examples had undisciplined annotations, which we disciplined.
Additionally to performing comprehension tasks on the annotated code, like in this
paper, we were interested in developers’ perception of working with disciplined and
undisciplined annotations.

Program Comprehension

An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, On
Program Comprehension AKGA11]

63

Abbes et al. performed an empirical study to establish whether certain antipatterns
(which we refer to as code smells), namely Blob and Spaghetti, affect program compre-
hension. They designed three experiments, two for each code smell and one with both
code smells at once, where 24 subjects each compare smelly code with non-smelly code.
The subjects were asked to perform tasks on the given examples. The performance was
measured with the NASA task load index for the effort, the performance time and the
percentage of correct answers. The results showed that the presence of one code smell
didn’t significantly reduce the program comprehension, while the presence of both code
smells had a negative impact. Therefore systems with high amounts of code smells are
less likely to be understood by developers which could lead to worse maintenance and
an increase in system ageing.

This study showed that while moderate amounts of code smells are unproblematic, their
increase negatively impacts program comprehension. This study was performed using
Java and didn’t consider variability.

An empirical investigation of an object-oriented design heuristic for maintainability[DSRS03]

This paper focused on the impact code design has on the maintainability of object-
oriented code, as well as establish a connection between the code design and metrics.
The performed study shows that design heuristics do affect the performance of subjects.
Additionally, an effect on code evolution has been established and a relationship between
the used metrics and code design was found.

This study was performed on object-oriented code and it’s smells (specifically the god
class). It lacks the variability aspect of our work and focuses on a different code smell.

A controlled experiment investigation of an object-oriented design heuristic for
maintainability[DSA*04]

The impact of design heuristics on maintainability of object-oriented code was a focus of
this paper as well. A controlled experiment was performed with undergraduate students,
in order to understand how a specific design heuristic (the 'god class’) influences the
quality of developed designs. The experiment verified that the design heuristic affects
the evolution of design structures. Additionally it affects the way subjects apply the
inheritance mechanism.

This work focused on the way object-oriented software systems can be expanded and
maintained when the code smell God Class is present. While we asked ourself similar
questions, we were more interested to ask the opinion of experienced developers on the
ease of expanding and maintaining variable code.

When Code Smells Twice as Much: Metric-Based Detection of Variability-Aware Code
Smells[FSMS15]

In this paper a metric-based method to detect variability-aware code smells has been
proposed in order to improve code comprehension and maintenance. In order to improve
understanding of code using preprocessor directives, the aggregated metric ABSmell has

64 5. Related Work

been introduced. The tool SKUNK has been implemented to exercise the application of
the metrics on variable code. SKUNK is then tested on five highly configurable software
systems to detect problematic code.

In this thesis we make use of the findings of this paper as well as the tool implemented
for it. The code examples we selected were evaluated by SKUNK to gain insight into
their smelliness levels. However, the results of their study haven’t be confirmed on
human subjects which this thesis aims to change.

6. Conclusion

Software product lines, also known as variable software, allow to implement individu-
alised software with lower cost and time investment. Software product lines consist of
features, that define the characteristics of the software system. Software product lines
can be implemented either through composition-based or annotation-based approaches.
Annotation-based variability is often used in practice.

A widely used implementation of annotation-based variability is the C preprocessor.
CPP annotations come in the form of directives and macros, where the code from a
feature is surrounded by #1i fdefs or other conditional compilation directives. An often
critiqued problem when using directives like that is the reduced readability of the code,
since they break the code flow. Especially when several #ifdefs are nested within
each other, developers may find it difficult to understand what’s going on in the code
and later have difficulties maintaining the code.

So far heavily annotated C code has been evaluated by certain variability-aware met-
rics. Presumably the metrics allow to make predictions on how well a developer can be
expected to understand the code. However, since metrics lack subject interaction, we
wished to confirm that experienced developers perceive code similarly problematic re-
garding heavily nested annotations, number of #ifdefs, feature constants or negations
used in the code, ratio of annotated to not annotated code and other metrics.

In order to test whether variability-aware metrics can indeed be used to predict how
well a developer will understand the code, we designed an online survey and distributed
it amongst developers from open source projects. We defined our research questions
to reflect program comprehension through both tasks and self-estimations. RQ1 asked
whether different amounts of preprocessor use would affect the effectiveness during
program comprehension tasks. The first research question was measured through two
comprehension tasks where the subjects answered questions about the code based on
their understanding. RQ2 asked whether our metrics reflect the subjective assessments
of code quality. In order to answer this research question the subjects were asked

66 6. Conclusion

whether the annotation use in the example was appropriate and how they would rate
the ease of understanding, maintaining, extending and finding bugs in the code on a
Likert scale. RQ3 asked which reasons were given by the developers regarding poor pro-
gram comprehension. This was answered through open coding evaluation of qualitative
questions asked during the survey.

The online survey had five examples with different levels of smelliness. The other
examples were present in two versions: original and refactored. There were two different
variants of the questionnaire which alternated between an original and a refactored
example. The examples came from real environments, namely the vim project and the
emacs project.

The survey was distributed amongst experienced developers. It was completed 544
times, 273 times with the first and 271 with the second questionnaire. We compared
the two groups of subjects and found the differences between them negligible.

When answering the research questions we showed the collected data and performed
logistic and negative binomial regressions. The regression analysis showed that the
results are inconclusive due to the small amount of examples. The results suggested
that the NOFL metric has a big negative effect on correctness. The NOFC metric had
a positive effect on the first comprehension task and a negative on the second. The
other variability-aware metrics had a positive effect ranging from a 39% increase of
correctness per increase in the metric to 16114999%, which seems implausible. More
testing with more examples should be done in order to establish whether the metrics
have a definitive effect on solving program comprehension tasks.

The regression analysis of the answers of the second research question failed to establish
a correlation of the metrics and how likely the subjects was to rate the annotation use
appropriate. Understanding and maintaining had no significant correlation either. A
subject was 11% more likely to find extending the example code harder, when the NOFC
metric increased. A correlation between the metrics and the ease of detecting bugs in
the code could not be established. Generally speaking, the subjective assessments of
code quality did not seem to be affected by the metrics.

Reasons given for poor program comprehension were the use of annotation and general
code quality. Code quality included the code design and bad indentations. Annotation
were named as a reason for poor code comprehension, because they make the code less
readable and more complex. The complexity was present in the form of highly nested
annotations. Annotations were also problematic insofar that they broke the code flow.

Future Work

In the end of our survey we asked the subjects to provide their e-mail addresses in
case they are interested in a follow-up interview. Since feedback during the duration of
the survey showed that the subjects wanted to share more opinions than the provided
qualitative questions allowed, conducting these interviews would be a good start to get
better insight in these opinions.

67

Controlled experiments measuring time, correctness and perceived workload could be
designed in order to get a better insight into the process of program comprehension
while working with annotated code. Think-aloud protocols could complement these
experiments.

Another idea would be to replicate the survey with less examples and more questionnaire
variants, to cut the completion time for the subjects and making the participation more
attractive. Our code examples were all very heavily annotated, code examples where
the annotation severity fluctuate more would give more generalised results.

Further work on the variability-aware metrics could be a part of future work as well.
Implementing code examples that work well with the introduced new metrics could be
fruitful, especially in comparison with decade-old code. Writing new examples from
scratch, one could ensure that they are tied to only one metric, e.g. the annotation
severity but not the amount of constants etc..

Even though we contacted contributors to C- projects, we received several e-mails stat-
ing that the person doesn’t work with C any longer due to it being considered harmful.
Therefore a replication of the survey in other languages could be called for to get de-
velopers working in modern languages on board.

The survey design could be improved to ensure the subjects answer the questions in
good faith, e.g. by introducing control questions. This would improve the quality of
the answers and improve the significance of the gained insights.

68

6. Conclusion

A. Appendix

A.1 Code Examples

A.1.1 Viml8

Listing A.1: Full code of example vim18

int
im_get_status (void)
{
ifdef FEAT EVAL
if (p-imsf[0] != NUL)

int is_active;

if (exiting
ifdef FEAT AUTOCMD
|| is_autocmd_blocked ()
endif
)
return FALSE;
++msg_silent ;
is_active = call_func_retnr (p_imsf, 0, NULL, FALSE);
—msg_silent ;
return (is_active > 0);
}
endif
return im_is_active;

70 A. Appendix

A.1.2 Viml5 Original

Listing A.2: Full code of example vim15

char_u =
fix_fname (fname)

char_u xfname;
{

#ifdef UNIX
return FullName_save (fname, TRUE);
#else
if (!vim_isAbsName (fname)
|| strstr ((char x)fname, ”7..”) != NULL
|| strstr ((char x)fname, ”//”) != NULL
ifdef BACKSLASH IN_FILENAME
|| strstr ((char x)fname, ”\\\\”) != NULL

endif
if defined (MSWIN) || defined (DJGPP)

|| vim_strchr (fname, ’'7’) != NULL
endif

)

return FullName_save (fname, FALSE);
fname = vim_strsave (fname);

ifdef USE_FNAME CASE
ifdef USELONGFNAME
if (USELONG.FNAME)
endif
{
if (fname != NULL)
fname_case (fname, 0);
}

endif

return fname;
#endif
¥

A.1. Code Examples 71

A.1.3 Vimlb5 Refactored

Listing A.3: Full code of example vim15 refactored

#ifdef UNIX
char_u =

fix_fname (fname)
char_u x*fname;
{

}

#else /+x IUNIX x/

return FullName_save (fname, TRUE);

char_u =«
fix_fname (fname)

char_u *fname;
{

int is_rel_name = !vim_isAbsName (fname)
|| strstr ((char x)fname, ”..”) != NULL
|| strstr ((char x)fname, ”//”) != NULL;
ifdef BACKSLASH IN_FILENAME

is_rel_name = is_rel_name || strstr((char x)fname, "\\\\”)
|— NULL;
endif
if defined (MSWIN) || defined (DJGPP)
is_.rel_name = is_rel_name || vim_strchr(fname, ’'7’) != NULL
endif

if (is_rel_name)
return FullName_save (fname, FALSE);

fname = vim_strsave (fname) ;

ifdef USE_FNAME CASE

if !defined (USELONG.FNAME) || USELONG.FNAME
if (fname != NULL)
fname_case (fname, 0);

endif

endif

return fname;

}
#endif

72 A. Appendix

A.1.4 Viml3 Original

Listing A.4: Full code of example vim13

static void
ins_redraw (ready)
int ready UNUSED;
{

#ifdef FEAT CONCEAL

linenr_T conceal_old_cursor_line = 0;

linenr_T conceal_new_cursor_line = 0;

int conceal_update_lines = FALSE;
#endif

if (!char_avail())

{
#if defined (FEATAUTOCMD) || defined (FEAT CONCEAL)

if (ready & (
4 ifdef FEAT AUTOOMD
has_cursormovedlI ()

endif
if defined (FEATAUTOCMD) && defined (FEAT.CONCEAL)

||
endif
ifdef FEAT CONCEAL
curwin—>w_p_cole > 0

)

&& !equalpos(last_cursormoved , curwin—>w_cursor)
ifdef FEAT_INS_EXPAND
&& !pum_visible ()

endif

endif
)
{
ifdef FEAT_SYN_HL
if (syntax_present(curwin) && must_redraw)
update_screen (0) ;
endif
ifdef FEAT AUTOCMD
if (has_cursormovedI())
apply_autocmds (EVENT_.CURSORMOVEDI, NULL, NULL, FALSE,
curbuf);
endif
ifdef FEAT CONCEAL
if (curwin—>w_p_cole > 0)
{
conceal_old_cursor_line = last_cursormoved.lnum;
conceal_new_cursor_line = curwin—>w_cursor .lnum;

A.1. Code Examples

73

conceal_update_lines = TRUE;
endif
last_cursormoved = curwin—>w_cursor;

#endif
#ifdef FEAT AUTOCMD
if (!ready && has_textchangedI()
&& last_changedtick != curbuf—>b_changedtick
ifdef FEAT_INS_EXPAND
&& !pum_visible ()
endif
)
{
if (last_changedtick_buf = curbuf)
apply_autocmds (EVENT TEXTCHANGEDI, NULL, NULL, FALSE,
curbuf) ;
last_changedtick_buf = curbuf;
last_changedtick = curbuf—>b_changedtick;

}
#endif
if (must_redraw)
update_screen (0) ;
else if (clear_cmdline || redraw_cmdline)
showmode () ;
if defined (FEAT_.CONCEAL)
if ((conceal_update_lines
&& (conceal_old_cursor_line != conceal_new_cursor_line
|| conceal_cursor_line (curwin)))
|| need_cursor_line_redraw)

if (conceal_old_cursor_line != conceal_new_cursor_line)
update_single_line (curwin, conceal_old_cursor_line);
update_single_line (curwin, conceal_new_cursor_line =— 0

? curwin—>w_cursor .lnum
conceal_new_cursor_line);

curwin—>w_valid &= “VALID_CROW;

endif
showruler (FALSE) ;
setcursor () ;
emsg_on_display = FALSE;

74 A. Appendix

A.1.5 Viml3 Refactored

Listing A.5: Full code of example vim13 refactored

static void
ins_redraw (ready)

int ready UNUSED;

{

#ifdef FEAT CONCEAL
linenr_T conceal_old_cursor_line = 0;
linenr_T conceal_new_cursor_line = 0;
int conceal_update_lines = FALSE;

#endif

if (!char_avail())
{
#if defined (FEATAUTOCMD) || defined (FEAT_ CONCEAL)
if (ready)

{
int need_update = 0;
ifdef FEAT AUTOCMD

need_update = need_update || has_cursormovedI();
endif
ifdef FEAT CONCEAL
need_update = need_update || (curwin—>w_p_cole > 0);
endif
need_update = need_update && !equalpos(last_cursormoved

, curwin—>w_cursor) ;
ifdef FEAT_INS_EXPAND
need_update = need_update && !pum_visible () ;
endif
if (need_update)
{
4 ifdef FEAT SYN HL
if (syntax_present(curwin) && must_redraw)
update_screen (0) ;
endif
ifdef FEAT AUTOCMD
if (has_cursormovedI())
apply_autocmds (EVENT_.CURSORMOVEDI, NULL, NULL,
FALSE, curbuf);
endif
ifdef FEAT_CONCEAL
if (curwin—>w_p_cole > 0)

{

conceal_old_cursor_line = last_cursormoved .Ilnum

7

A.1. Code Examples 75

conceal_new_cursor_line = curwin—>w_cursor .lnum

conceal_update_lines = TRUE;

}

endif
last_cursormoved = curwin—>w_cursor;
}
}
#endif
#ifdef FEAT AUTOCMD
int update_last_changed = !ready && has_textchangedl () &&
last_changedtick != curbuf—>b_changedtick;

ifdef FEAT_INS_EXPAND

update_last_changed = update_last_changed && !pum_visible ()
endif

if (update_last_changed)

if (last_changedtick_buf = curbuf)
apply_autocmds (EVENT_-TEXTCHANGEDI, NULL, NULL,
FALSE, curbuf);
last_changedtick_buf = curbuf;
last_changedtick = curbuf—>b_changedtick;

}
#endif
if (must_redraw)
update_screen (0) ;
else if (clear_cmdline || redraw_cmdline)
showmode () ;
if defined (FEAT_-CONCEAL)
if ((conceal_update_lines
&& (conceal_old_cursor_line != conceal_new_cursor_line
|| conceal_cursor_line (curwin)))
|| need_cursor_line_redraw)

if (conceal_old_cursor_line != conceal_new_cursor_line)
update_single_line (curwin, conceal_old_cursor_line);
update_single_line (curwin, conceal_new_cursor_line = 0

? curwin—>w_cursor .lnum
conceal_new_cursor_line);
curwin—>w_valid &= "VALID_CROW;
}
endif
showruler (FALSE) ;
setcursor () ;
emsg_on_display = FALSE;

76

A. Appendix

A.1. Code Examples

A.1.6 Emacsl2 Original

Listing A.6: Full code of example emacs12

bool
c_isxdigit (int c)
{
#if C_.CTYPE_CONSECUTIVE_DIGITS \
&& C_CTYPE.CONSECUTIVE_.UPPERCASE &&
C_CTYPE_CONSECUTIVE_ LOWERCASE
#if C_CTYPE_ASCII
return ((c >= "0’ & c <= ’9")
Il ((c & 70x20) >= A’ && (¢ & 70x20) <= "F’));
#else
return ((c >= "0’ & c <= ’9")
|| (¢ >= "A" & ¢ <= 'F’)
[| (c>= "a’ & c <= "f));

#Hendif
#else
switch (c¢)
{
case '0’: case ’'1’: case ’2’: case '3’: case ’4’: case ’'H’:
case '6’: case '7T’: case ’'8’: case ’'9’:
case 'A’: case 'B’: case 'C’: case 'D’: case 'E’: case ’'F’:
case ’a’: case 'b’: case ’'c’: case 'd’: case ’e’: case 'f’:
return 1;
default:
return 0;
}
#endif

}

78 A. Appendix

A.1.7 Emacsl2 Refactored

Listing A.7: Full code of example emacs12 refactored

#if C_CTYPE_CONSECUTIVE_DIGITS \
&& C_CTYPE CONSECUTIVE_UPPERCASE &&
C_CTYPE_CONSECUTIVE_ LOWERCASE

bool
c_isxdigit (int c)
{
#if C_CTYPE_ASCII
return ((c >= "0’ & c <= ’9")
Il ((c & 70x20) >= "A’ & (¢ & 70x20) <= "F’));
#else
return ((c
||
||

#endif
}

#else /x |(C.CTYPE.CONSECUTIVE.DIGITS \
&& C_CTYPE.CONSECUTIVE UPPERCASE &&
C_CTYPE.CONSECUTIVE_.LOWERCASE) /

bool
c_isxdigit (int c¢)
{
switch (c¢)
{
case '0’: case ’'1’: case ’2’: case '3’: case ’'4’: case ’'H’:
case '6’: case '7’: case ’'8’: case ’'9’:
case 'A’: case 'B’: case 'C’: case 'D’: case 'E’: case ’'F’:
case ’a’: case 'b’: case ’'c’: case 'd’: case ’e’: case 'f’:
return 1;
default :
return 0;
}
}

#endif

A.1. Code Examples

79

A.1.8 Emacsll Original

Listing A.8: Full code of example emacs11

int
acl_entries (acl_t acl)
{

int count = O0;

if (acl != NULL)
{
#if HAVE ACL FIRST_ENTRY /* Linuz, FreeBSD, Mac OS X %/
if HAVE ACL.TYPE EXTENDED /x Mac OS X x/
acl_entry_t ace;
int got_one;

for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
got_one >= 0;
got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
count+4+;
else /« Linuzx, FreeBSD x/
acl_entry_t ace;
int got_one;

for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
got_one > O0;
got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
count++;
if (got_one < 0)
return —1;
endif
#else /+x IRIX, Tru6j =/
if HAVE ACL.TOSHORT-TEXT /+ IRIX x/

count = acl—>acl_cnt;
endif
if HAVE ACL FREE TEXT /« Trut6j x/
count = acl—acl_num;
endif
#endif
¥

return count;

}

80 A. Appendix

A.1.9 Emacsll Refactored

Listing A.9: Full code of example emacs11 refactored

#ifdef HAVE ACL FIRST_ENTRY /+ Linuz, FreeBSD, Mac OS X x/

int

acl_entries (acl_t acl)

{
int count = O0;
acl_entry_t ace;
int got_one;

if (acl != NULL)
{
if HAVEACLTYPEEXTENDED /+ Mac OS X */
for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
got_one >= 0;
got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
count—+4+;
else /+ Linuzx, FreeBSD x/
for (got_one = acl_get_entry (acl, ACLFIRST_ENTRY, &ace);
got_one > 0;
got_one = acl_get_entry (acl, ACLNEXTENTRY, &ace))
count—+-+;
if (got_one < 0)
return —1;
endif
}

return count;

}

#else /« IRIX, Tru6j: !HAVE ACL FIRST ENTRY x/
int
acl_entries (acl_t acl)

{

int count = O0;

if (acl != NULL)

{
if HAVE ACL.TOSHORT.TEXT /+ IRIX x/
count = acl—acl_cnt;
endif
if HAVEACLFREETEXT /x Tru64 x/
count = acl—acl_num;
endif
¥

return count;

A.2. Hardest Lines 81

#endif

A.2 Hardest Lines

Line viml8 vimlb vimlb-r viml3 viml3-r emacsl2 emacsl2:r emacsll emacsll-r

1 8 3 3 24 33 2 29 3 10

2 6 2 1 22 33 1 23 2 4

3 5 2 9 25 37 2 8 2 4

4 13 1 10 24 32 20 6 2 3

3 37 7 12 35 41 46 6 2 4

6 12 8 1 35 41 35 6 2 3

7 12 11 2 35 41 17 12 2 3

8 12 66 2 35 41 37 16 9 3

9 98 65 2 35 41 15 49 18 4
10 121 65 2 36 41 11 11 21 4
11 137 76 3 48 46 11 11 21 36
12 120 80 11 47 48 11 11 21 57
13 82 76 12 114 71 18 11 45 61
14 o7 76 11 134 71 14 12 50 56
15 22 78 4 133 71 1 8 43 90
16 36 69 61 135 76 2 6 34 47
17 20 20 o8 133 79 3 8 27 o8
18 10 39 60 135 78 3 6 28 63
19 11 15 48 139 78 3 4 29 59
20 12 17 59 134 78 4 2 29 48
21 28 10 48 131 78 2 2 20 o4
22) 37 49 133 78 1 2 26 49
23 49 93 131 78 1 2 20 35
24 o7 46 129 78 1 2 40 7
25 45 9 126 78 1 2 41 7
26 35 13 123 78 1 2 36 7
27 35 10 124 71 2 23 6
28 37 8 123 70 2 17 16
29 35 8 115 72 2 14 7
30 33 6 89 73 2 13 7
31 8 25 83 73 2 13 5
32 7 45 82 72 2 13 5
33 8 21 82 70 2 14 5
34 2 23 81 70 2 13 7
35 20 81 70) 10 7

82 A. Appendix

Line viml8 viml5 vimlb-r viml3 viml3-r emacsl?2 emacsl2:r emacsll emacsll-r

36 20 81 70 2 12
37 4 81 70 2 12
38 4 81 69 3 14
39 3 78 68 2 14
40 3 74 68 12
41 73 68 12
42 73 68 3
43 73 68 3
44 73 68 4
45 73 65 4
46 73 63 7
47 72 63
48 72 64
49 73 o8
50 66 65
51 69 58
52 69 o8
53 67 o8
54 68 26
%) 67 25
56 65 55
57 62 95
58 61 5}
29 61 25
60 61 25
61 61 25
62 61 56
63 62 o6
64 44 55
65 44 55
66 44 60
67 44 97
68 47 99
69 73 98
70 71 97
71 71 68
72 71 65
73 50 62
74 49 60

I6) 47 o8

A.2. Hardest Lines 83

Line viml8 viml5 viml5r viml3 viml3-r emacsl2 emacsl2r emacsll emacsll-r
76 48 59

77 47 54

78 47 53

79 46 37

80 45 37

81 30 36

82 30 35

83 30

84 33

84

A. Appendix

Bibliography

[AKGA11]

[Cox58|

[dej]

[Dil11]

[DPSKO07]

[DSA*04]

[DSRS03]

[FKA*+13]

Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano An-
toniol. An empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension. In 2011 15th Furopean Con-
ference on Software Maintenance and Reengineering, pages 181-190. IEEE,
2011. (cited on Page 62)

David R Cox. The regression analysis of binary sequences. Journal of the
Royal Statistical Society: Series B (Methodological), 20(2):215-232, 1958.
(cited on Page 11)

dejure.org. Rechtsprechung - bgh, 20.05.2009 - i zr 218/07. (cited on Page 22)

Don A Dillman. Mail and Internet surveys: The tailored design method.
John Wiley & Sons, 2011. (cited on Page 9 and 10)

Massimiliano Di Penta, RE Kurt Stirewalt, and Eileen Kraemer. Designing
your next empirical study on program comprehension. In 15th IEEE Inter-
national Conference on Program Comprehension (ICPC’07), pages 281-285.
IEEE, 2007. (cited on Page 10)

Ignatios Deligiannis, loannis Stamelos, Lefteris Angelis, Manos Roumeli-
otis, and Martin Shepperd. A controlled experiment investigation of an
object-oriented design heuristic for maintainability. Journal of Systems and
Software, 72(2):129-143, 2004. (cited on Page 63)

Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, and loannis
Stamelos. An empirical investigation of an object-oriented design heuristic
for maintainability. Journal of Systems and Software, 65(2):127-139, 2003.
(cited on Page 6 and 63)

Janet Feigenspan, Christian Késtner, Sven Apel, Jorg Liebig, Michael
Schulze, Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter
Saake. Do Background Colors Improve Program Comprehension in the
#1fdef Hell? Empirical Software Engineering (EMSE), 18(4):699-745, Au-
gust 2013. (cited on Page 61)

86

Bibliography

[FN99)]

[Fow00]

[FS15]

[FSF11]

[FSMS15]

[FSS17]

[Joh11]

[KATS12]

[Kaz|

[KRO6]

[Lal

[LAL*10]

Norman E Fenton and Martin Neil. Software metrics: successes, failures
and new directions. Journal of Systems and Software, 47(2-3):149-157,
1999. (cited on Page 7)

Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000. (cited on Page 6)

Wolfram Fenske and Sandro Schulze. Code smells revisited: A variability
perspective. In Proceedings of the Ninth International Workshop on Vari-
ability Modelling of Software-intensive Systems, VaMoS 15, pages 3:3-3:10,
New York, NY, USA, 2015. ACM. (cited on Page 2, 6, 7, and 8)

Janet Feigenspan, Norbert Siegmund, and Jana Fruth. On the role of pro-
gram comprehension in embedded systems. In Proc. Workshop Software
Reengineering (WSR), pages 34-35, 2011. (cited on Page 8)

Wolfram Fenske, Sandro Schulze, Daniel Meyer, and Gunter Saake. When
code smells twice as much: Metric-based detection of variability-aware code
smells. In 2015 IEEFE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 171-180. IEEE, 2015.
(cited on Page 6, 7, 13, 15, and 63)

Wolfram Fenske, Sandro Schulze, and Gunter Saake. How preprocessor an-
notations (do not) affect maintainability: A case study on change-proneness.
SIGPLAN Not., 52(12):77—90, October 2017. (cited on Page 2)

James L Johnson. Probability and statistics for computer science. John
Wiley & Sons, 2011. (cited on Page 11)

Christian Késtner, Sven Apel, Thomas Thiim, and Gunter Saake. Type
Checking Annotation-Based Product Lines. ACM Transactions on Software
Engineering and Methodology (TOSEM), 21(3):14:1-14:39, July 2012. (cited

on Page 1)

Anastasia Kazakova. Infographic: C/c++ facts we learned before going
ahead with clion. (cited on Page 22)

Brian W Kernighan and Dennis M Ritchie. The C programming language.
2006. (cited on Page 6)

Alyson La. Language trends on github. (cited on Page 19)

Jorg Liebig, Sven Apel, Christian Lengauer, Christian Késtner, and Michael
Schulze. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 105-114. IEEE Computer Science, May
2010. (cited on Page 2, 6, and 22)

Bibliography 87

[LKA11]

[LWE11]

IMBW16]

[MKR*15]

[MTRK14]

(0018

[SABK13]

[SLSA13]

Jorg Liebig, Christian Késtner, and Sven Apel. Analyzing the discipline
of preprocessor annotations in 30 million lines of ¢ code. In Proceedings of

the tenth international conference on Aspect-oriented software development,
pages 191-202. ACM, 2011. (cited on Page 2)

Duc Le, Eric Walkingshaw, and Martin Erwig. #ifdef Confirmed Harm-
ful: Promoting Understandable Software Variation. pages 143-150. IEEE
Computer Science, September 2011. (cited on Page 2 and 6)

Jean Melo, Claus Brabrand, and Andrzej Wasowski. How does the degree
of variability affect bug finding? In Proceedings of the 38th International
Conference on Software Engineering, pages 679-690. ACM, 2016. (cited on
Page 2, 57, and 62)

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Sarah Nadi, and Rohit
Gheyi. The Love/Hate Relationship with the C Preprocessor: An Interview
Study. practice, 12:40, 2015. (cited on Page 2, 13, and 61)

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the
comprehension of program comprehension. ACM Transactions on Software
Engineering and Methodology (TOSEM), 23(4):31, 2014. (cited on Page 8)

Michael Oberguggenberger and Alexander Ostermann. Analysis for Com-
puter Scientists. Springer, 2018. (cited on Page 11)

Gunter Saake Sven Apel, Don Batory, and Christian Késtner. Feature-
Oriented Software Product Lines: Concepts and Implementation. 2013.
(cited on Page 1, 5, and 6)

Sandro Schulze, Jorg Liebig, Janet Siegmund, and Sven Apel. Does the
discipline of preprocessor annotations matter?: a controlled experiment. In
ACM SIGPLAN Notices, volume 49, pages 65-74. ACM, 2013. (cited on
Page 2 and 62)

IEEE Spectrum. Ieee top programming languages: Design, methods, and
data sources. (cited on Page 19)

Magdalena Szumilas. Explaining odds ratios. Journal of the Canadian
academy of child and adolescent psychiatry, 19(3):227, 2010. (cited on
Page 11)

Achim Zeileis, Christian Kleiber, and Simon Jackman. Regression models
for count data in r. Journal of statistical software, 27(8):1-25, 2008. (cited

on Page 11)

88

Bibliography

Hiermit erklére ich, dass ich die vorliegende Arbeit selbstdndig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 18. April 2019

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Variable Software
	2.1.1 CPP-Based Variability

	2.2 Variability-Aware Code Smells
	2.2.1 Variability-Aware Metrics

	2.3 Program Comprehension
	2.4 Designing and Conducting Surveys
	2.4.1 Survey Errors
	2.4.2 Benefits and Costs of a Survey
	2.4.3 Designing with Program Comprehension in Mind

	2.5 Regression Models
	2.5.1 Logistic Regression and Negative Binomial Regression

	2.6 Summary

	3 Methodology
	3.1 Survey in a Nutshell
	3.2 Goal of the Survey
	3.3 Code Examples and Questions
	3.4 Subject Selection
	3.5 Summary

	4 Survey Results
	4.1 Subject Group Comparison
	4.1.1 Subject Demographics
	4.1.2 Baseline Comparison

	4.2 Answering the Research Questions
	4.2.1 RQ1: Do Different Amounts of Preprocessor Use Affect Developer Effectiveness During Program Comprehension Tasks?
	4.2.2 RQ2: Do Metrics of Preprocessor Use Reflect Subjective Assessments of Code Quality?
	4.2.3 RQ3: Which Reasons Do Developers Mention for Poor Program Comprehension?

	4.3 Discussion
	4.3.1 Demographics Discussion
	4.3.2 Notable Examples
	4.3.3 Reasons and Mood
	4.3.4 Regression Analysis

	4.4 Threats to Validity
	4.4.1 Internal Validity
	4.4.2 External Validity

	4.5 Summary

	5 Related Work
	6 Conclusion
	A Appendix
	A.1 Code Examples
	A.1.1 Vim18
	A.1.2 Vim15 Original
	A.1.3 Vim15 Refactored
	A.1.4 Vim13 Original
	A.1.5 Vim13 Refactored
	A.1.6 Emacs12 Original
	A.1.7 Emacs12 Refactored
	A.1.8 Emacs11 Original
	A.1.9 Emacs11 Refactored

	A.2 Hardest Lines

	Bibliography

